------------------------------------------------------------------------
INPUT FILE DESCRIPTION

Program: pw.x / PWscf / Quantum Espresso
------------------------------------------------------------------------


Input data format: { } = optional, [ ] = it depends, | = or

All quantities whose dimensions are not explicitly specified are in
RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied
by e); potentials are in energy units (i.e. they are multiplied by e)

BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE
Comment lines in namelists can be introduced by a "!", exactly as in
fortran code. Comments lines in ``cards'' can be introduced by
either a "!" or a "#" character in the first position of a line.

Structure of the input data:
===============================================================================

&CONTROL
  ...
/

&SYSTEM
 ...
/

&ELECTRONS
...
/

[ &IONS
  ...
 / ]

[ &CELL
  ...
 / ]

ATOMIC_SPECIES
 X  Mass_X  PseudoPot_X
 Y  Mass_Y  PseudoPot_Y
 Z  Mass_Z  PseudoPot_Z

ATOMIC_POSITIONS { alat | bohr | crystal | angstrom }
  X 0.0  0.0  0.0  {if_pos(1) if_pos(2) if_pos(3)}
  Y 0.5  0.0  0.0
  Z O.0  0.2  0.2

K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c }
if (gamma)
   nothing to read
if (automatic)
   nk1, nk2, nk3, k1, k2, k3
if (not automatic)
   nks
   xk_x, xk_y, xk_z,  wk

[ CELL_PARAMETERS { alat | bohr | angstrom }
   v1(1) v1(2) v1(3)
   v2(1) v2(2) v2(3)
   v3(1) v3(2) v3(3) ]

[ OCCUPATIONS
   f_inp1(1)  f_inp1(2)  f_inp1(3) ... f_inp1(10)
   f_inp1(11) f_inp1(12) ... f_inp1(nbnd)
 [ f_inp2(1)  f_inp2(2)  f_inp2(3) ... f_inp2(10)
   f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ]

[ CONSTRAINTS
   nconstr  { constr_tol }
   constr_type(.)   constr(1,.)   constr(2,.) [ constr(3,.)   constr(4,.) ] { constr_target(.) } ]



========================================================================
NAMELIST: &CONTROL

   +--------------------------------------------------------------------
   Variable:       calculation
   
   Type:           CHARACTER
   Default:        'scf'
   Description:    a string describing the task to be performed:
                      'scf',
                      'nscf',
                      'bands',
                      'relax',
                      'md',
                      'vc-relax',
                      'vc-md'
                   
                      (vc = variable-cell).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       title
   
   Type:           CHARACTER
   Default:        ' '
   Description:    reprinted on output.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       verbosity
   
   Type:           CHARACTER
   Default:        'low'
   Description:    Currently two verbosity levels are implemented:
                     'high' and 'low'. 'debug' and 'medium' have the same
                     effect as 'high'; 'default' and 'minimal', as 'low'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       restart_mode
   
   Type:           CHARACTER
   Default:        'from_scratch'
   Description:    'from_scratch'  : from scratch. This is the normal way
                                     to perform a PWscf calculation
                   'restart'       : from previous interrupted run. Use this
                                     switch only if you want to continue an
                                     interrupted calculation, not to start a
                                     new one. See also startingpot, startingwfc
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wf_collect
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    This flag controls the way wavefunctions are stored to disk :
                   
                   .TRUE.  collect wavefunctions from all processors, store them
                           into the output data directory outdir/prefix.save,
                           one wavefunction per k-point in subdirs K000001/,
                           K000001/, etc.
                   
                   .FALSE. do not collect wavefunctions, leave them in temporary
                           local files (one per processor). The resulting format
                           will be readable only by jobs running on the same
                           number of processors and pools. Useful if you do not
                           need the wavefunction or if you want to reduce the I/O
                           or the disk occupancy.
                   
                   Note that this flag has no effect on reading, only on writing.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nstep
   
   Type:           INTEGER
   Description:    number of ionic + electronic steps
   Default:        1  if calculation = 'scf', 'nscf', 'bands';
                   50 for the other cases
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       iprint
   
   Type:           INTEGER
   Default:        write only at convergence
   Description:    band energies are written every iprint iterations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tstress
   
   Type:           LOGICAL
   Default:        .false.
   Description:    calculate stress. It is set to .TRUE. automatically if
                   calculation='vc-md' or 'vc-relax'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tprnfor
   
   Type:           LOGICAL
   Description:    print forces. Set to .TRUE. if calculation='relax','md','vc-md'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dt
   
   Type:           REAL
   Default:        20.D0
   Description:    time step for molecular dynamics, in Rydberg atomic units
                   (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses
                    Hartree atomic units, half that much!!!)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       outdir
   
   Type:           CHARACTER
   Default:        value of the ESPRESSO_TMPDIR environment variable if set;
                   current directory ('./') otherwise
   Description:    input, temporary, output files are found in this directory,
                   see also 'wfcdir'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wfcdir
   
   Type:           CHARACTER
   Default:        same as outdir
   Description:    this directory specifies where to store files generated by
                   each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is
                   to be able to separately store the largest files, while
                   the files necessary for restarting still go into 'outdir'
                   (for now only works for stand alone PW )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       prefix
   
   Type:           CHARACTER
   Default:        'pwscf'
   Description:    prepended to input/output filenames:
                   prefix.wfc, prefix.rho, etc.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lkpoint_dir
   
   Type:           LOGICAL
   Default:        .true.
   Description:    If .false. a subdirectory for each k_point is not opened
                   in the prefix.save directory; Kohn-Sham eigenvalues are
                   stored instead in a single file for all k-points. Currently
                   doesn't work together with wf_collect
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       max_seconds
   
   Type:           REAL
   Default:        1.D+7, or 150 days, i.e. no time limit
   Description:    jobs stops after max_seconds CPU time
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       etot_conv_thr
   
   Type:           REAL
   Default:        1.0D-4
   Description:    convergence threshold on total energy (a.u) for ionic
                   minimization: the convergence criterion is satisfied
                   when the total energy changes less than etot_conv_thr
                   between two consecutive scf steps. Note that etot_conv_thr
                   is extensive, like the total energy.
                   See also forc_conv_thr - both criteria must be satisfied
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       forc_conv_thr
   
   Type:           REAL
   Default:        1.0D-3
   Description:    convergence threshold on forces (a.u) for ionic minimization:
                   the convergence criterion is satisfied when all components of
                   all forces are smaller than forc_conv_thr.
                   See also etot_conv_thr (note that the latter is extensive,
                   forc_conv_thr is not) - both criteria must be satisfied
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       disk_io
   
   Type:           CHARACTER
   Default:        'default'
   Description:    Specifies the amount of disk I/O activity
                   'high':    save all data at each SCF step
                   
                   'default': save wavefunctions at each SCF step unless
                              there is a single k-point per process
                   
                   'low' :    store wfc in memory, save only at the end
                   
                   'none':    do not save wfc, not even at the end
                              (guaranteed to work only for 'scf', 'nscf',
                               'bands' calculations)
                   
                   If restarting from an interrupted calculation, the code
                   will try to figure out what is available on disk. The
                   more you write, the more complete the restart will be.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       pseudo_dir
   
   Type:           CHARACTER
   Default:        value of the $ESPRESSO_PSEUDO environment variable if set;
                   '$HOME/espresso/pseudo/' otherwise
   Description:    directory containing pseudopotential files
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tefield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. a saw-like potential simulating an electric field
                   is added to the bare ionic potential. See variables
                   edir, eamp, emaxpos, eopreg for the form and size of
                   the added potential.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       dipfield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. and tefield=.TRUE. a dipole correction is also
                   added to the bare ionic potential - implements the recipe
                   of L. Bengtsson, PRB 59, 12301 (1999). See variables edir,
                   emaxpos, eopreg for the form of the correction, that must
                   be used only in a slab geometry, for surface calculations,
                   with the discontinuity in the empty space.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lelfield
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. a homogeneous finite electric field described
                   through the modern theory of the polarization is applied.
                   This is different from "tefield=.true." !
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nberrycyc
   
   Type:           INTEGER
   Default:        1
   Description:    In the case of a finite electric field  ( lelfield == .TRUE. )
                   it defines the number of iterations for converging the
                   wavefunctions in the electric field Hamiltonian, for each
                   external iteration on the charge density
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lorbm
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. perform orbital magnetization calculation.
                   If finite electric field is applied (lelfield=.true.)
                   only Kubo terms are computed
                   [for details see New J. Phys. 12, 053032 (2010)].
                   The type of calculation is nscf and should be performed
                   on an automatically generated uniform grid of k points.
                   Works with norm-conserving pseudopotentials.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lberry
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. perform a Berry phase calculation
                   See the header of PW/bp_c_phase.f90 for documentation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       gdir
   
   Type:           INTEGER
   Description:    For Berry phase calculation: direction of the k-point
                   strings in reciprocal space. Allowed values: 1, 2, 3
                   1=first, 2=second, 3=third reciprocal lattice vector
                   For calculations with finite electric fields
                   (lelfield==.true.), gdir is the direction of the field
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nppstr
   
   Type:           INTEGER
   Description:    For Berry phase calculation: number of k-points to be
                   calculated along each symmetry-reduced string
                   The same for calculation with finite electric fields
                   (lelfield==.true.)
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &SYSTEM

   +--------------------------------------------------------------------
   Variable:       ibrav
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    Bravais-lattice index. In all cases except ibrav=0,
                     either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc]
                     must be specified: see their description. For ibrav=0
                     you may specify the lattice parameter celldm(1) or a.
                   
                   ibrav      structure                   celldm(2)-celldm(6)
                                                        or: b,c,cosab,cosac,cosbc
                     0          free
                         crystal axis provided in input: see card CELL_PARAMETERS
                   
                     1          cubic P (sc)
                         v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,1)
                   
                     2          cubic F (fcc)
                         v1 = (a/2)(-1,0,1),  v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
                   
                     3          cubic I (bcc)
                         v1 = (a/2)(1,1,1),  v2 = (a/2)(-1,1,1),  v3 = (a/2)(-1,-1,1)
                   
                     4          Hexagonal and Trigonal P        celldm(3)=c/a
                         v1 = a(1,0,0),  v2 = a(-1/2,sqrt(3)/2,0),  v3 = a(0,0,c/a)
                   
                     5          Trigonal R, 3fold axis c        celldm(4)=cos(alpha)
                         The crystallographic vectors form a three-fold star around
                         the z-axis, the primitive cell is a simple rhombohedron:
                         v1 = a(tx,-ty,tz),   v2 = a(0,2ty,tz),   v3 = a(-tx,-ty,tz)
                         where c=cos(alpha) is the cosine of the angle alpha between
                         any pair of crystallographic vectors, tx, ty, tz are:
                           tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
                    -5          Trigonal R, 3fold axis <111>    celldm(4)=cos(alpha)
                         The crystallographic vectors form a three-fold star around
                         <111>. Defining a' = a/sqrt(3) :
                         v1 = a' (u,v,v),   v2 = a' (v,u,v),   v3 = a' (v,v,u)
                         where u and v are defined as
                           u = tz - 2*sqrt(2)*ty,  v = tz + sqrt(2)*ty
                         and tx, ty, tz as for case ibrav=5
                   
                     6          Tetragonal P (st)               celldm(3)=c/a
                         v1 = a(1,0,0),  v2 = a(0,1,0),  v3 = a(0,0,c/a)
                   
                     7          Tetragonal I (bct)              celldm(3)=c/a
                         v1=(a/2)(1,-1,c/a),  v2=(a/2)(1,1,c/a),  v3=(a/2)(-1,-1,c/a)
                   
                     8          Orthorhombic P                  celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a,0,0),  v2 = (0,b,0), v3 = (0,0,c)
                   
                     9          Orthorhombic base-centered(bco) celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a/2, b/2,0),  v2 = (-a/2,b/2,0),  v3 = (0,0,c)
                    -9          as 9, alternate description
                         v1 = (a/2,-b/2,0),  v2 = (a/2,-b/2,0),  v3 = (0,0,c)
                   
                    10          Orthorhombic face-centered      celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1 = (a/2,0,c/2),  v2 = (a/2,b/2,0),  v3 = (0,b/2,c/2)
                   
                    11          Orthorhombic body-centered      celldm(2)=b/a
                                                                celldm(3)=c/a
                         v1=(a/2,b/2,c/2),  v2=(-a/2,b/2,c/2),  v3=(-a/2,-b/2,c/2)
                   
                    12          Monoclinic P, unique axis c     celldm(2)=b/a
                                                                celldm(3)=c/a,
                                                                celldm(4)=cos(ab)
                         v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0),  v3 = (0,0,c)
                         where gamma is the angle between axis a and b.
                   -12          Monoclinic P, unique axis b     celldm(2)=b/a
                                                                celldm(3)=c/a,
                                                                celldm(5)=cos(ac)
                         v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta))
                         where beta is the angle between axis a and c
                   
                    13          Monoclinic base-centered        celldm(2)=b/a
                                                                celldm(3)=c/a,
                                                                celldm(4)=cos(ab)
                         v1 = (  a/2,         0,                -c/2),
                         v2 = (b*cos(gamma), b*sin(gamma), 0),
                         v3 = (  a/2,         0,                  c/2),
                         where gamma is the angle between axis a and b
                   
                    14          Triclinic                       celldm(2)= b/a,
                                                                celldm(3)= c/a,
                                                                celldm(4)= cos(bc),
                                                                celldm(5)= cos(ac),
                                                                celldm(6)= cos(ab)
                         v1 = (a, 0, 0),
                         v2 = (b*cos(gamma), b*sin(gamma), 0)
                         v3 = (c*cos(beta),  c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
                              c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
                                        - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
                     where alpha is the angle between axis b and c
                            beta is the angle between axis a and c
                           gamma is the angle between axis a and b
   +--------------------------------------------------------------------
   
   ///---
      EITHER:
      
      +--------------------------------------------------------------------
      Variable:       celldm(i), i=1,6
      
      Type:           REAL
      See:            ibrav
      Description:    Crystallographic constants - see description of ibrav variable.
                      
                      * alat = celldm(1) is the lattice parameter "a" (in BOHR)
                      * only needed celldm (depending on ibrav) must be specified
                      * if ibrav=0 only alat = celldm(1) is used (if present)
      +--------------------------------------------------------------------
      
      OR:
      
      +--------------------------------------------------------------------
      Variables:      A, B, C, cosAB, cosAC, cosBC
      
      Type:           REAL
      Description:    Traditional crystallographic constants: a,b,c in ANGSTROM
                      cosAB = cosine of the angle between axis a and b (gamma)
                      cosAC = cosine of the angle between axis a and c (beta)
                      cosBC = cosine of the angle between axis b and c (alpha)
                      specify either these OR celldm but NOT both.
                      
                      The axis are chosen according to the value of ibrav.
                      If ibrav is not specified, the axis are taken from card
                      CELL_PARAMETERS and only a is used as lattice parameter.
      +--------------------------------------------------------------------
      
   \\\---
   
   +--------------------------------------------------------------------
   Variable:       nat
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    number of atoms in the unit cell
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ntyp
   
   Type:           INTEGER
   Status:         REQUIRED
   Description:    number of types of atoms in the unit cell
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nbnd
   
   Type:           INTEGER
   Default:        for an insulator, nbnd = number of valence bands
                   (nbnd = # of electrons /2);
                   for a metal, 20% more (minimum 4 more)
   Description:    number of electronic states (bands) to be calculated.
                   Note that in spin-polarized calculations the number of
                   k-point, not the number of bands per k-point, is doubled
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tot_charge
   
   Type:           REAL
   Default:        0.0
   Description:    total charge of the system. Useful for simulations with charged cells.
                   By default the unit cell is assumed to be neutral (tot_charge=0).
                   tot_charge=+1 means one electron missing from the system,
                   tot_charge=-1 means one additional electron, and so on.
                   
                   In a periodic calculation a compensating jellium background is
                   inserted to remove divergences if the cell is not neutral.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tot_magnetization
   
   Type:           REAL
   Default:        -1 [unspecified]
   Description:    total majority spin charge - minority spin charge.
                   Used to impose a specific total electronic magnetization.
                   If unspecified then tot_magnetization variable is ignored and
                   the amount of electronic magnetization is determined during
                   the self-consistent cycle.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_magnetization(i), i=1,ntyp
   
   Type:           REAL
   Description:    starting spin polarization on atomic type 'i' in a spin
                   polarized calculation. Values range between -1 (all spins
                   down for the valence electrons of atom type 'i') to 1
                   (all spins up). Breaks the symmetry and provides a starting
                   point for self-consistency. The default value is zero, BUT a
                   value MUST be specified for AT LEAST one atomic type in spin
                   polarized calculations, unless you constrain the magnetization
                   (see "tot_magnetization" and "constrained_magnetization").
                   Note that if you start from zero initial magnetization, you
                   will invariably end up in a nonmagnetic (zero magnetization)
                   state. If you want to start from an antiferromagnetic state,
                   you may need to define two different atomic species
                   corresponding to sublattices of the same atomic type.
                   starting_magnetization is ignored if you are performing a
                   non-scf calculation, if you are restarting from a previous
                   run, or restarting from an interrupted run.
                   If you fix the magnetization with "tot_magnetization",
                   you should not specify starting_magnetization.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutwfc
   
   Type:           REAL
   Status:         REQUIRED
   Description:    kinetic energy cutoff (Ry) for wavefunctions
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutrho
   
   Type:           REAL
   Default:        4 * ecutwfc
   Description:    kinetic energy cutoff (Ry) for charge density and potential
                   For norm-conserving pseudopotential you should stick to the
                   default value, you can reduce it by a little but it will
                   introduce noise especially on forces and stress.
                   If there are ultrasoft PP, a larger value than the default is
                   often desirable (ecutrho = 8 to 12 times ecutwfc, typically).
                   PAW datasets can often be used at 4*ecutwfc, but it depends
                   on the shape of augmentation charge: testing is mandatory.
                   The use of gradient-corrected functional, especially in cells
                   with vacuum, or for pseudopotential without non-linear core
                   correction, usually requires an higher values of ecutrho
                   to be accurately converged.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutfock
   
   Type:           REAL
   Default:        ecutrho
   Description:    kinetic energy cutoff (Ry) for the exact exchange operator in
                   EXX type calculations. By default this is the same as ecutrho
                   but in some EXX calculations significant speed-up can be found
                   by reducing ecutfock, at the expense of some loss in accuracy.
                   Currently only implemented for the optimized gamma point only
                   calculations.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nr1, nr2, nr3
   
   Type:           INTEGER
   Description:    three-dimensional FFT mesh (hard grid) for charge
                   density (and scf potential). If not specified
                   the grid is calculated based on the cutoff for
                   charge density (see also "ecutrho")
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nr1s, nr2s, nr3s
   
   Type:           INTEGER
   Description:    three-dimensional mesh for wavefunction FFT and for the smooth
                   part of charge density ( smooth grid ).
                   Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nosym
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) symmetry is not used. Note that
                   - if the k-point grid is provided in input, it is used "as is"
                     and symmetry-inequivalent k-points are not generated;
                   - if the k-point grid is automatically generated, it will
                     contain only points in the irreducible BZ for the bravais
                     lattice, irrespective of the actual crystal symmetry.
                   A careful usage of this option can be advantageous
                   - in low-symmetry large cells, if you cannot afford a k-point
                     grid with the correct symmetry
                   - in MD simulations
                   - in calculations for isolated atoms
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nosym_evc
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if(.TRUE.) symmetry is not used but the k-points are
                   forced to have the symmetry of the Bravais lattice;
                   an automatically generated k-point grid will contain
                   all the k-points of the grid and the points rotated by
                   the symmetries of the Bravais lattice which are not in the
                   original grid. If available, time reversal is
                   used to reduce the k-points (and the q => -q symmetry
                   is used in the phonon code). To disable also this symmetry set
                   noinv=.TRUE..
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       noinv
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) disable the usage of k => -k symmetry
                   (time reversal) in k-point generation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       no_t_rev
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) disable the usage of magnetic symmetry operations
                   that consist in a rotation + time reversal.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       force_symmorphic
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) force the symmetry group to be symmorphic by disabling
                   symmetry operations having an associated fractionary translation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       use_all_frac
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if (.TRUE.) do not discard symmetry operations with an
                   associated fractionary translation that does not send the
                   real-space FFT grid into itself. These operations are
                   incompatible with real-space symmetrization but not with the
                   new G-space symmetrization. BEWARE: do not use for phonons!
                   The phonon code still uses real-space symmetrization.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       occupations
   
   Type:           CHARACTER
   Description:    'smearing':     gaussian smearing for metals
                                   requires a value for degauss
                   
                   'tetrahedra' :  especially suited for calculation of DOS
                                   (see P.E. Bloechl, PRB49, 16223 (1994))
                                   Requires uniform grid of k-points,
                                   automatically generated (see below)
                                   Not suitable (because not variational) for
                                   force/optimization/dynamics calculations
                   
                   'fixed' :       for insulators with a gap
                   
                   'from_input' :  The occupation are read from input file.
                                   Requires "nbnd" to be set in input.
                                   Occupations should be consistent with the
                                   value of "tot_charge".
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       one_atom_occupations
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    This flag is used for isolated atoms (nat=1) together with
                   occupations='from_input'. If it is .TRUE., the wavefunctions
                   are ordered as the atomic starting wavefunctions, independently
                   from their eigenvalue. The occupations indicate which atomic
                   states are filled.
                   The order of the states is written inside the UPF
                   pseudopotential file.
                   In the scalar relativistic case:
                   S -> l=0, m=0
                   P -> l=1, z, x, y
                   D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2
                   In the noncollinear magnetic case (with or without spin-orbit),
                   each group of states is doubled. For instance:
                   P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down.
                   Up and down is relative to the direction of the starting
                   magnetization.
                   In the case with spin-orbit and time-reversal
                   (starting_magnetization=0.0) the atomic wavefunctions are
                   radial functions multiplied by spin-angle functions.
                   For instance:
                   P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2,
                        m_j=-3/2, -1/2, 1/2, 3/2.
                   In the magnetic case with spin-orbit the atomic wavefunctions
                   can be forced to be spin-angle functions by setting
                   starting_spin_angle to .TRUE..
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_spin_angle
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    In the spin-orbit case when domag=.TRUE., by default,
                   the starting wavefunctions are initialized as in scalar
                   relativistic noncollinear case without spin-orbit.
                   By setting starting_spin_angle=.TRUE. this behaviour can
                   be changed and the initial wavefunctions are radial
                   functions multiplied by spin-angle functions.
                   When domag=.FALSE. the initial wavefunctions are always
                   radial functions multiplied by spin-angle functions
                   independently from this flag.
                   When lspinorb is .FALSE. this flag is not used.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       degauss
   
   Type:           REAL
   Default:        0.D0 Ry
   Description:    value of the gaussian spreading (Ry) for brillouin-zone
                   integration in metals.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       smearing
   
   Type:           CHARACTER
   Default:        'gaussian'
   Description:    'gaussian', 'gauss':
                       ordinary Gaussian spreading (Default)
                   
                   'methfessel-paxton', 'm-p', 'mp':
                       Methfessel-Paxton first-order spreading
                       (see PRB 40, 3616 (1989)).
                   
                   'marzari-vanderbilt', 'cold', 'm-v', 'mv':
                       Marzari-Vanderbilt cold smearing
                       (see PRL 82, 3296 (1999))
                   
                   'fermi-dirac', 'f-d', 'fd':
                       smearing with Fermi-Dirac function
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       nspin
   
   Type:           INTEGER
   Default:        1
   Description:    nspin = 1 :  non-polarized calculation (default)
                   
                   nspin = 2 :  spin-polarized calculation, LSDA
                                (magnetization along z axis)
                   
                   nspin = 4 :  spin-polarized calculation, noncollinear
                                (magnetization in generic direction)
                                DO NOT specify nspin in this case;
                                specify "noncolin=.TRUE." instead
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       noncolin
   
   Type:           LOGICAL
   Default:        .false.
   Description:    if .true. the program will perform a noncollinear calculation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecfixed
   
   Type:           REAL
   Default:        0.0
   See:            q2sigma
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       qcutz
   
   Type:           REAL
   Default:        0.0
   See:            q2sigma
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       q2sigma
   
   Type:           REAL
   Default:        0.1
   Description:    ecfixed, qcutz, q2sigma:  parameters for modified functional to be
                   used in variable-cell molecular dynamics (or in stress calculation).
                   "ecfixed" is the value (in Rydberg) of the constant-cutoff;
                   "qcutz" and "q2sigma" are the height and the width (in Rydberg)
                   of the energy step for reciprocal vectors whose square modulus
                   is greater than "ecfixed". In the kinetic energy, G^2 is
                   replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) )
                   See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       input_dft
   
   Type:           CHARACTER
   Default:        read from pseudopotential files
   Description:    Exchange-correlation functional: eg 'PBE', 'BLYP' etc
                   See Modules/functionals.f90 for allowed values.
                   Overrides the value read from pseudopotential files.
                   Use with care and if you know what you are doing!
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       exx_fraction
   
   Type:           REAL
   Default:        it depends on the specified functional
   Description:    Fraction of EXX for hybrid functional calculations. In the case of
                   input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP'
                   the exx_fraction default value is 0.20.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       screening_parameter
   
   Type:           REAL
   Default:        0.106
   Description:    screening_parameter for HSE like hybrid functionals.
                   See J. Chem. Phys. 118, 8207 (2003)
                   and J. Chem. Phys. 124, 219906 (2006) for more informations.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       exxdiv_treatment
   
   Type:           CHARACTER
   Default:        gygi-baldereschi
   Description:    Specific for EXX. It selects the kind of approach to be used
                   for treating the Coulomb potential divergencies at small q vectors.
                   
                   gygi-baldereschi : appropriate for cubic and quasi-cubic supercells
                   vcut_spherical : appropriate for cubic and quasi-cubic supercells
                   vcut_ws : appropriate for strongly anisotropic supercells, see also
                             ecutvcut.
                   none : sets Coulomb potential at G,q=0 to 0.0
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ecutvcut
   
   Type:           REAL
   Default:        0.0 Ry
   See:            exxdiv_treatment
   Description:    Reciprocal space cutoff for correcting
                   Coulomb potential divergencies at small q vectors.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variables:      nqx1, nqx2, nqx3
   
   Type:           INTEGER
   Description:    three-dimensional mesh for q (k1-k2) sampling of
                   the Fock operator (EXX). Can be smaller than
                   the number of k-points.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lda_plus_u
   
   Type:           LOGICAL
   Default:        .FALSE.
   Status:         DFT+U (formerly known as LDA+U) currently works only for
                   a few selected elements. Modify PW/set_hubbard_l.f90 and
                   PW/tabd.f90 if you plan to use DFT+U with an element that
                   is not configured there.
   Description:    Specify lda_plus_u = .TRUE. to enable DFT+U calculations
                   See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991);
                        Anisimov et al., PRB 48, 16929 (1993);
                        Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994).
                   You must specify, for each species with a U term, the value of
                   U and (optionally) alpha, J of the Hubbard model (all in eV):
                   see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lda_plus_u_kind
   
   Type:           INTEGER
   Default:        0
   Description:    Specifies the type of DFT+U calculation:
                                     0   simplified version of Cococcioni and de Gironcoli,
                                         PRB 71, 035105 (2005), using Hubbard_U
                                     1   rotationally invariant scheme of Liechtenstein et al.,
                                         using Hubbard_U and Hubbard_J
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_U(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_J0(i), i=1,ntype
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation,
                   see PRB 84, 115108 (2011) for details.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_alpha(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_alpha(i) is the perturbation (on atom i, in eV)
                   used to compute U with the linear-response method of
                   Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
                   (only for lda_plus_u_kind=0)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_beta(i), i=1,ntyp
   
   Type:           REAL
   Default:        0.D0 for all species
   Description:    Hubbard_beta(i) is the perturbation (on atom i, in eV)
                   used to compute J0 with the linear-response method of
                   Cococcioni and de Gironcoli, PRB 71, 35105 (2005)
                   (only for lda_plus_u_kind=0). See also
                   PRB 84, 115108 (2011).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       Hubbard_J(i,ityp)
   
   Default:        0.D0 for all species
   Description:    Hubbard_J(i,ityp): J parameters (eV) for species ityp,
                   used in DFT+U calculations (only for lda_plus_u_kind=1)
                   For p orbitals:  J = Hubbard_J(1,ityp);
                   For d orbitals:  J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp);
                   For f orbitals:  J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp),
                                    E3= Hubbard_J(3,ityp).
                   If B or E2 or E3 are not specified or set to 0 they will be
                   calculated from J using atomic ratios.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       starting_ns_eigenvalue(m,ispin,I)
   
   Type:           REAL
   Default:        -1.d0 that means NOT SET
   Description:    In the first iteration of an DFT+U run it overwrites
                   the m-th eigenvalue of the ns occupation matrix for the
                   ispin component of atomic species I. Leave unchanged
                   eigenvalues that are not set. This is useful to suggest
                   the desired orbital occupations when the default choice
                   takes another path.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       U_projection_type
   
   Type:           CHARACTER
   Default:        'atomic'
   Description:    Only active when lda_plus_U is .true., specifies the type
                   of projector on localized orbital to be used in the DFT+U
                   scheme.
                   
                   Currently available choices:
                   'atomic': use atomic wfc's (as they are) to build the projector
                   
                   'ortho-atomic': use Lowdin orthogonalized atomic wfc's
                   
                   'norm-atomic':  Lowdin normalization of atomic wfc. Keep in mind:
                                   atomic wfc are not orthogonalized in this case.
                                   This is a "quick and dirty" trick to be used when
                                   atomic wfc from the pseudopotential are not
                                   normalized (and thus produce occupation whose
                                   value exceeds unity). If orthogonalized wfc are
                                   not needed always try 'atomic' first.
                   
                   'file':         use the information from file "prefix".atwfc that must
                                   have been generated previously, for instance by pmw.x
                                   (see PP/poormanwannier.f90 for details).
                   
                   'pseudo':       use the pseudopotential projectors. The charge density
                                   outside the atomic core radii is excluded.
                                   N.B.: for atoms with +U, a pseudopotential with the
                                   all-electron atomic wavefunctions is required (i.e.,
                                   as generated by ld1.x with lsave_wfc flag).
                   
                   NB: forces and stress currently implemented only for the
                   'atomic' and 'pseudo' choice.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       edir
   
   Type:           INTEGER
   Description:    The direction of the electric field or dipole correction is
                   parallel to the bg(:,edir) reciprocal lattice vector, so the
                   potential is constant in planes defined by FFT grid points;
                   edir = 1, 2 or 3. Used only if tefield is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       emaxpos
   
   Type:           REAL
   Default:        0.5D0
   Description:    Position of the maximum of the saw-like potential along crystal
                   axis "edir", within the  unit cell (see below), 0 < emaxpos < 1
                   Used only if tefield is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       eopreg
   
   Type:           REAL
   Default:        0.1D0
   Description:    Zone in the unit cell where the saw-like potential decreases.
                   ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       eamp
   
   Type:           REAL
   Default:        0.001 a.u.
   Description:    Amplitude of the electric field, in ***Hartree*** a.u.;
                   1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE.
                   The saw-like potential increases with slope "eamp" in the
                   region from (emaxpos+eopreg-1) to (emaxpos), then decreases
                   to 0 until (emaxpos+eopreg), in units of the crystal
                   vector "edir". Important: the change of slope of this
                   potential must be located in the empty region, or else
                   unphysical forces will result.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       angle1(i), i=1,ntyp
   
   Type:           REAL
   Description:    The angle expressed in degrees between the initial
                   magnetization and the z-axis. For noncollinear calculations
                   only; index i runs over the atom types.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       angle2(i), i=1,ntyp
   
   Type:           REAL
   Description:    The angle expressed in degrees between the projection
                   of the initial magnetization on x-y plane and the x-axis.
                   For noncollinear calculations only.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       constrained_magnetization
   
   Type:           CHARACTER
   See:            lambda, fixed_magnetization
   Default:        'none'
   Description:    Used to perform constrained calculations in magnetic systems.
                   Currently available choices:
                   
                   'none':
                            no constraint
                   
                   'total':
                            total magnetization is constrained by
                            adding a penalty functional to the total energy:
                   
                            LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2
                   
                            where the sum over i runs over the three components of
                            the magnetization. Lambda is a real number (see below).
                            Noncolinear case only. Use "tot_magnetization" for LSDA
                   
                   'atomic':
                            atomic magnetization are constrained to the defined
                            starting magnetization adding a penalty:
                   
                            LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2
                   
                            where i runs over the cartesian components (or just z
                            in the collinear case) and itype over the types (1-ntype).
                            mcons(:,:) array is defined from starting_magnetization,
                            (and angle1, angle2 in the non-collinear case). lambda is
                            a real number
                   
                   'total direction':
                             the angle theta of the total magnetization
                             with the z axis (theta = fixed_magnetization(3))
                             is constrained:
                   
                             LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2
                   
                             where mag_tot is the modulus of the total magnetization.
                   
                   'atomic direction':
                             not all the components of the atomic
                             magnetic moment are constrained but only the cosine
                             of angle1, and the penalty functional is:
                   
                             LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2
                   
                   N.B.: symmetrization may prevent to reach the desired orientation
                         of the magnetization. Try not to start with very highly symmetric
                         configurations or use the nosym flag (only as a last remedy)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       fixed_magnetization(i), i=1,3
   
   Type:           REAL
   See:            constrained_magnetization
   Default:        0.d0
   Description:    value of the total magnetization to be maintained fixed when
                   constrained_magnetization='total'
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lambda
   
   Type:           REAL
   See:            constrained_magnetization
   Default:        1.d0
   Description:    parameter used for constrained_magnetization calculations
                   N.B.: if the scf calculation does not converge, try to reduce lambda
                         to obtain convergence, then restart the run with a larger lambda
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       report
   
   Type:           INTEGER
   Default:        1
   Description:    It is the number of iterations after which the program
                   write all the atomic magnetic moments.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       lspinorb
   
   Type:           LOGICAL
   Description:    if .TRUE. the noncollinear code can use a pseudopotential with
                   spin-orbit.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       assume_isolated
   
   Type:           CHARACTER
   Default:        'none'
   Description:    Used to perform calculation assuming the system to be
                   isolated (a molecule or a cluster in a 3D supercell).
                   
                   Currently available choices:
                   
                   'none' (default): regular periodic calculation w/o any correction.
                   
                   'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the
                            total energy is computed. An estimate of the vacuum
                            level is also calculated so that eigenvalues can be
                            properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3)
                            Theory:
                            G.Makov, and M.C.Payne,
                            "Periodic boundary conditions in ab initio
                            calculations" , Phys.Rev.B 51, 4014 (1995)
                   
                   'dcc' :  density counter charge correction CURRENTLY DISABLED
                            The electrostatic problem is solved in open boundary
                            conditions (OBC). This approach provides the correct
                            scf potential and energies (not just a correction to
                            energies as 'mp'). BEWARE: the molecule should be
                            centered around the middle of the cell, not around
                            the origin (0,0,0).
                            Theory described in:
                            I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari,
                            "Electrostatic periodic boundary conditions and
                            real-space corrections", Phys.Rev.B 77, 115139 (2008)
                   
                   'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction.
                            As for the dcc correction the scf potential is also
                            corrected. Implementation adapted from:
                            G.J. Martyna, and M.E. Tuckerman,
                            "A reciprocal space based method for treating long
                            range interactions in ab-initio and force-field-based
                            calculation in clusters", J.Chem.Phys. 110, 2810 (1999)
                   
                   'esm' :  Effective Screening Medium Method.
                            For polarized or charged slab calculation, embeds
                            the simulation cell within an effective semi-
                            infinite medium in the perpendicular direction
                            (along z). Embedding regions can be vacuum or
                            semi-infinite metal electrodes (use 'esm_bc' to
                            choose boundary conditions). If between two
                            electrodes, an optional electric field
                            ('esm_efield') may be applied. Method described in
                            M. Otani and O. Sugino, "First-principles
                            calculations of charged surfaces and interfaces:
                            A plane-wave nonrepeated slab approach," PRB 73,
                            115407 (2006).
                            NB: Requires cell with a_3 lattice vector along z,
                            normal to the xy plane, with the slab centered
                            around z=0. Also requires symmetry checking to be
                            disabled along z, either by setting 'nosym' = .TRUE.
                            or by very slight displacement (i.e., 5e-4 a.u.)
                            of the slab along z.
                            See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_bc
   
   Type:           CHARACTER
   See:            assume_isolated
   Default:        'pbc'
   Description:    If assume_isolated = 'esm', determines the boundary
                   conditions used for either side of the slab.
                   
                   Currently available choices:
                   
                   'pbc' (default): regular periodic calculation (no ESM).
                   
                   'bc1' : Vacuum-slab-vacuum (open boundary conditions)
                   
                   'bc2' : Metal-slab-metal (dual electrode configuration).
                           See also 'esm_efield'.
                   
                   'bc3' : Vacuum-slab-metal
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_w
   
   Type:           REAL
   See:            assume_isolated
   Default:        0.d0
   Description:    If assume_isolated = 'esm', determines the position offset
                   [in a.u.] of the start of the effective screening region,
                   measured relative to the cell edge. (ESM region begins at
                   z = +/- [L_z/2 + esm_w] ).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_efield
   
   Type:           REAL
   See:            assume_isolated, esm_bc
   Default:        0.d0
   Description:    If assume_isolated = 'esm' and esm_bc = 'bc2', gives the
                   magnitude of the electric field [Ry/a.u.] to be applied
                   between semi-infinite ESM electrodes.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       esm_nfit
   
   Type:           INTEGER
   See:            assume_isolated
   Default:        4
   Description:    If assume_isolated = 'esm', gives the number of z-grid points
                   for the polynomial fit along the cell edge.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    if .TRUE. compute semi-empirical dispersion term (DFT-D).
                   See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and
                   V. Barone et al., J. Comp. Chem. 30, 934 (2009).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_s6
   
   Type:           REAL
   Default:        0.75
   Description:    global scaling parameter for DFT-D. Default is good for PBE.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       london_rcut
   
   Type:           REAL
   Default:        200
   Description:    cutoff radius (a.u.) for dispersion interactions
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &ELECTRONS

   +--------------------------------------------------------------------
   Variable:       electron_maxstep
   
   Type:           INTEGER
   Default:        100
   Description:    maximum number of iterations in a scf step
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       scf_must_converge
   
   Type:           LOGICAL
   Default:        .TRUE.
   Description:    If .false. do not stop molecular dynamics or ionic relaxation
                   when electron_maxstep is reached. Use with care.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr
   
   Type:           REAL
   Default:        1.D-6
   Description:    Convergence threshold for selfconsistency:
                   estimated energy error < conv_thr
                   (note that conv_thr is extensive, like the total energy)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       adaptive_thr
   
   Type:           LOGICAL
   Default:        .FALSE
   Description:    If .TRUE. this turns on the use of an adaptive conv_thr for
                   the inner scf loops when using EXX.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr_init
   
   Type:           REAL
   Default:        1.D-3
   Description:    When adaptive_thr = .TRUE. this is the convergence threshold
                   used for the first scf cycle.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       conv_thr_multi
   
   Type:           REAL
   Default:        1.D-1
   Description:    When adaptive_thr = .TRUE. the convergence threshold for
                   each scf cycle is given by:
                   min( conv_thr, conv_thr_multi * dexx )
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_mode
   
   Type:           CHARACTER
   Default:        'plain'
   Description:    'plain' :    charge density Broyden mixing
                   
                   'TF' :       as above, with simple Thomas-Fermi screening
                               (for highly homogeneous systems)
                   
                   'local-TF':  as above, with local-density-dependent TF screening
                                (for highly inhomogeneous systems)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_beta
   
   Type:           REAL
   Default:        0.7D0
   Description:    mixing factor for self-consistency
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_ndim
   
   Type:           INTEGER
   Default:        8
   Description:    number of iterations used in mixing scheme
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       mixing_fixed_ns
   
   Type:           INTEGER
   Default:        0
   Description:    For DFT+U : number of iterations with fixed ns ( ns is the
                     atomic density appearing in the Hubbard term ).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diagonalization
   
   Type:           CHARACTER
   Default:        'david'
   Description:    'david':  Davidson iterative diagonalization with overlap matrix
                             (default). Fast, may in some rare cases fail.
                   
                   'cg' :    conjugate-gradient-like band-by-band diagonalization
                             Typically slower than 'david' but it uses less memory
                             and is more robust (it seldom fails)
                   
                   'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead"
                             The subspace diagonalization in Davidson is performed
                             by a fully distributed-memory parallel algorithm on
                             4 or more processors, by default. The allocated memory
                             scales down with the number of procs. Procs involved
                             in diagonalization can be changed with command-line
                             option "-ndiag N". On multicore CPUs it is often
                             convenient to let just one core per CPU to work
                             on linear algebra.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ortho_para
   
   Type:           INTEGER
   Default:        0
   Status:         OBSOLETE: use command-line option " -ndiag XX" instead
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_thr_init
   
   Type:           REAL
   Description:    Convergence threshold for the first iterative diagonalization
                   (the check is on eigenvalue convergence).
                   For scf calculations, the default is 1.D-2 if starting from a
                   superposition of atomic orbitals; 1.D-5 if starting from a
                   charge density. During self consistency the threshold (ethr)
                   is automatically reduced when approaching convergence.
                   For non-scf calculations, this is the threshold used in the
                   iterative diagonalization. The default is conv_thr /N elec.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_cg_maxiter
   
   Type:           INTEGER
   Description:    For conjugate gradient diagonalization:
                   max number of iterations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_david_ndim
   
   Type:           INTEGER
   Default:        4
   Description:    For Davidson diagonalization: dimension of workspace
                   (number of wavefunction packets, at least 2 needed).
                   A larger value may yield a somewhat faster algorithm
                   but uses more memory. The opposite holds for smaller values.
                   Try diago_david_ndim=2 if you are tight on memory or if
                   your job is large: the speed penalty is often negligible
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       diago_full_acc
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .TRUE. all the empty states are diagonalized at the same level
                   of accuracy of the occupied ones. Otherwise the empty states are
                   diagonalized using a larger threshold (this should not affect
                   total energy, forces, and other ground-state properties).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       efield
   
   Type:           REAL
   Default:        0.D0
   Description:    Amplitude of the finite electric field (in Ry a.u.;
                   1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE.
                   and if k-points (K_POINTS card) are not automatic.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       efield_cart(i), i=1,3
   
   Type:           REAL
   Default:        (0.D0, 0.D0, 0.D0)
   Description:    Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in
                   cartesian axis. Used only if lelfield=.TRUE. and if
                   k-points (K_POINTS card) are automatic.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       startingpot
   
   Type:           CHARACTER
   Description:    'atomic': starting potential from atomic charge superposition
                             ( default for scf, *relax, *md )
                   
                   'file'  : start from existing "charge-density.xml" file in the
                             directory specified by variables "prefix" and "outdir"
                             For nscf and bands calculation this is the default
                             and the only sensible possibility.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       startingwfc
   
   Type:           CHARACTER
   Default:        'atomic+random'
   Description:    'atomic': start from superposition of atomic orbitals
                             If not enough atomic orbitals are available,
                             fill with random numbers the remaining wfcs
                             The scf typically starts better with this option,
                             but in some high-symmetry cases one can "loose"
                             valence states, ending up in the wrong ground state.
                   
                   'atomic+random': as above, plus a superimposed "randomization"
                             of atomic orbitals. Prevents the "loss" of states
                             mentioned above.
                   
                   'random': start from random wfcs. Slower start of scf but safe.
                             It may also reduce memory usage in conjunction with
                             diagonalization='cg'
                   
                   'file':   start from an existing wavefunction file in the
                             directory specified by variables "prefix" and "outdir"
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       tqr
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    If .true., use the real-space algorithm for augmentation
                   charges in ultrasoft pseudopotentials.
                   Must faster execution of ultrasoft-related calculations,
                   but numerically less accurate than the default algorithm.
                   Use with care and after testing!
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &IONS

   INPUT THIS NAMELIST ONLY IF CALCULATION = 'RELAX', 'MD', 'VC-RELAX', 'VC-MD'
   
   +--------------------------------------------------------------------
   Variable:       ion_dynamics
   
   Type:           CHARACTER
   Description:    Specify the type of ionic dynamics.
                   
                   For different type of calculation different possibilities are
                   allowed and different default values apply:
                   
                   CASE ( calculation = 'relax' )
                       'bfgs' :   (default)   use BFGS quasi-newton algorithm,
                                              based on the trust radius procedure,
                                              for structural relaxation
                       'damp' :               use damped (quick-min Verlet)
                                              dynamics for structural relaxation
                                              Can be used for constrained
                                              optimisation: see CONSTRAINTS card
                   
                   CASE ( calculation = 'md' )
                       'verlet' : (default)   use Verlet algorithm to integrate
                                              Newton's equation. For constrained
                                              dynamics, see CONSTRAINTS card
                       'langevin'             ion dynamics is over-damped Langevin
                   
                   CASE ( calculation = 'vc-relax' )
                       'bfgs' :   (default)   use BFGS quasi-newton algorithm;
                                              cell_dynamics must be 'bfgs' too
                       'damp' :               use damped (Beeman) dynamics for
                                              structural relaxation
                   CASE ( calculation = 'vc-md' )
                       'beeman' : (default)   use Beeman algorithm to integrate
                                              Newton's equation
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       ion_positions
   
   Type:           CHARACTER
   Default:        'default'
   Description:    'default '  : if restarting, use atomic positions read from the
                                 restart file; in all other cases, use atomic
                                 positions from standard input.
                   
                   'from_input' : restart the simulation with atomic positions read
                                 from standard input, even if restarting.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       phase_space
   
   Type:           CHARACTER
   Default:        'full'
   Description:    'full' :           the full phase-space is used for the ionic
                                      dynamics.
                   
                   'coarse-grained' : a coarse-grained phase-space, defined by a set
                                      of constraints, is used for the ionic dynamics
                                      (used for calculation of free-energy barriers)
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       pot_extrapolation
   
   Type:           CHARACTER
   Default:        'atomic'
   Description:    Used to extrapolate the potential from preceding ionic steps.
                   
                      'none'        :  no extrapolation
                   
                      'atomic'      :  extrapolate the potential as if it was a sum of
                                       atomic-like orbitals
                   
                      'first_order' :  extrapolate the potential with first-order
                                       formula
                   
                      'second_order':  as above, with second order formula
                   
                   Note: 'first_order' and 'second-order' extrapolation make sense
                   only for molecular dynamics calculations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wfc_extrapolation
   
   Type:           CHARACTER
   Default:        'none'
   Description:    Used to extrapolate the wavefunctions from preceding ionic steps.
                   
                      'none'        :  no extrapolation
                   
                      'first_order' :  extrapolate the wave-functions with first-order
                                       formula.
                   
                      'second_order':  as above, with second order formula.
                   
                   Note: 'first_order' and 'second-order' extrapolation make sense
                   only for molecular dynamics calculations
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       remove_rigid_rot
   
   Type:           LOGICAL
   Default:        .FALSE.
   Description:    This keyword is useful when simulating the dynamics and/or the
                   thermodynamics of an isolated system. If set to true the total
                   torque of the internal forces is set to zero by adding new forces
                   that compensate the spurious interaction with the periodic
                   images. This allows for the use of smaller supercells.
                   
                   BEWARE: since the potential energy is no longer consistent with
                   the forces (it still contains the spurious interaction with the
                   repeated images), the total energy is not conserved anymore.
                   However the dynamical and thermodynamical properties should be
                   in closer agreement with those of an isolated system.
                   Also the final energy of a structural relaxation will be higher,
                   but the relaxation itself should be faster.
   +--------------------------------------------------------------------
   
   ///---
      KEYWORDS USED FOR MOLECULAR DYNAMICS
      
      +--------------------------------------------------------------------
      Variable:       ion_temperature
      
      Type:           CHARACTER
      Default:        'not_controlled'
      Description:    'rescaling'   control ionic temperature via velocity rescaling
                                    (first method) see parameters "tempw", "tolp", and
                                    "nraise" (for VC-MD only). This rescaling method
                                    is the only one currently implemented in VC-MD
                      
                      'rescale-v'   control ionic temperature via velocity rescaling
                                    (second method) see parameters "tempw" and "nraise"
                      
                      'rescale-T'   control ionic temperature via velocity rescaling
                                    (third method) see parameter "delta_t"
                      
                      'reduce-T'    reduce ionic temperature every "nraise" steps
                                    by the (negative) value "delta_t"
                      
                      'berendsen'   control ionic temperature using "soft" velocity
                                    rescaling - see parameters "tempw" and "nraise"
                      
                      'andersen'    control ionic temperature using Andersen thermostat
                                    see parameters "tempw" and "nraise"
                      
                      'initial'     initialize ion velocities to temperature "tempw"
                                    and leave uncontrolled further on
                      
                      'not_controlled' (default) ionic temperature is not controlled
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       tempw
      
      Type:           REAL
      Default:        300.D0
      Description:    Starting temperature (Kelvin) in MD runs
                      target temperature for most thermostats.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       tolp
      
      Type:           REAL
      Default:        100.D0
      Description:    Tolerance for velocity rescaling. Velocities are rescaled if
                      the run-averaged and target temperature differ more than tolp.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       delta_t
      
      Type:           REAL
      Default:        1.D0
      Description:    if ion_temperature='rescale-T':
                             at each step the instantaneous temperature is multiplied
                             by delta_t; this is done rescaling all the velocities.
                      
                      if ion_temperature='reduce-T':
                             every 'nraise' steps the instantaneous temperature is
                             reduced by -delta_T (i.e. delta_t < 0 is added to T)
                      
                      The instantaneous temperature is calculated at the end of
                      every ionic move and BEFORE rescaling. This is the temperature
                      reported in the main output.
                      
                      For delta_t < 0, the actual average rate of heating or cooling
                      should be roughly C*delta_t/(nraise*dt) (C=1 for an
                      ideal gas, C=0.5 for a harmonic solid, theorem of energy
                      equipartition between all quadratic degrees of freedom).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       nraise
      
      Type:           INTEGER
      Default:        1
      Description:    if ion_temperature='reduce-T':
                             every 'nraise' steps the instantaneous temperature is
                             reduced by -delta_T (.e. delta_t is added to the temperature)
                      
                      if ion_temperature='rescale-v':
                             every 'nraise' steps the average temperature, computed from
                             the last nraise steps, is rescaled to tempw
                      
                      if ion_temperature='rescaling' and calculation='vc-md':
                             every 'nraise' steps the instantaneous temperature
                             is rescaled to tempw
                      
                      if ion_temperature='berendsen':
                             the "rise time" parameter is given in units of the time step:
                             tau = nraise*dt, so dt/tau = 1/nraise
                      
                      if ion_temperature='andersen':
                             the "collision frequency" parameter is given as nu=1/tau
                             defined above, so nu*dt = 1/nraise
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       refold_pos
      
      Type:           LOGICAL
      Default:        .FALSE.
      Description:    This keyword applies only in the case of molecular dynamics or
                      damped dynamics. If true the ions are refolded at each step into
                      the supercell.
      +--------------------------------------------------------------------
      
   \\\---
   
   ///---
      KEYWORDS USED ONLY IN BFGS CALCULATIONS
      
      +--------------------------------------------------------------------
      Variable:       upscale
      
      Type:           REAL
      Default:        100.D0
      Description:    Max reduction factor for conv_thr during structural optimization
                      conv_thr is automatically reduced when the relaxation
                      approaches convergence so that forces are still accurate,
                      but conv_thr will not be reduced to less that
                      conv_thr / upscale.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       bfgs_ndim
      
      Type:           INTEGER
      Default:        1
      Description:    Number of old forces and displacements vectors used in the
                      PULAY mixing of the residual vectors obtained on the basis
                      of the inverse hessian matrix given by the BFGS algorithm.
                      When bfgs_ndim = 1, the standard quasi-Newton BFGS method is
                      used.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_max
      
      Type:           REAL
      Default:        0.8D0
      Description:    Maximum ionic displacement in the structural relaxation.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_min
      
      Type:           REAL
      Default:        1.D-3
      Description:    Minimum ionic displacement in the structural relaxation
                      BFGS is reset when trust_radius < trust_radius_min.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       trust_radius_ini
      
      Type:           REAL
      Default:        0.5D0
      Description:    Initial ionic displacement in the structural relaxation.
                      (bfgs only)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       w_1
      
      Type:           REAL
      Default:        0.01D0
      See:            w_2
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       w_2
      
      Type:           REAL
      Default:        0.5D0
      Description:    Parameters used in line search based on the Wolfe conditions.
                      (bfgs only)
      +--------------------------------------------------------------------
      
   \\\---
   
===END OF NAMELIST======================================================


========================================================================
NAMELIST: &CELL

   INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-MD'
   
   +--------------------------------------------------------------------
   Variable:       cell_dynamics
   
   Type:           CHARACTER
   Description:    Specify the type of dynamics for the cell.
                   For different type of calculation different possibilities
                   are allowed and different default values apply:
                   
                   CASE ( calculation = 'vc-relax' )
                     'none':    no dynamics
                     'sd':      steepest descent ( not implemented )
                     'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman
                                extended lagrangian
                     'damp-w':  damped (Beeman) dynamics of the new Wentzcovitch
                                extended lagrangian
                     'bfgs':    BFGS quasi-newton algorithm (default)
                                ion_dynamics must be 'bfgs' too
                   CASE ( calculation = 'vc-md' )
                     'none':    no dynamics
                     'pr':      (Beeman) molecular dynamics of the Parrinello-Rahman
                                extended lagrangian
                     'w':       (Beeman) molecular dynamics of the new Wentzcovitch
                                extended lagrangian
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       press
   
   Type:           REAL
   Default:        0.D0
   Description:    Target pressure [KBar] in a variable-cell md or relaxation run.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       wmass
   
   Type:           REAL
   Default:        0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD;
                   0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD
   Description:    Fictitious cell mass [amu] for variable-cell simulations
                   (both 'vc-md' and 'vc-relax')
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       cell_factor
   
   Type:           REAL
   Default:        1.2D0
   Description:    Used in the construction of the pseudopotential tables.
                   It should exceed the maximum linear contraction of the
                   cell during a simulation.
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       press_conv_thr
   
   Type:           REAL
   Default:        0.5D0 Kbar
   Description:    Convergence threshold on the pressure for variable cell
                   relaxation ('vc-relax' : note that the other convergence
                   thresholds for ionic relaxation apply as well).
   +--------------------------------------------------------------------
   
   +--------------------------------------------------------------------
   Variable:       cell_dofree
   
   Type:           CHARACTER
   Default:        'all'
   Description:    Select which of the cell parameters should be moved:
                   
                   all     = all axis and angles are moved
                   x       = only the x component of axis 1 (v1_x) is moved
                   y       = only the y component of axis 2 (v2_y) is moved
                   z       = only the z component of axis 3 (v3_z) is moved
                   xy      = only v1_x and v_2y are moved
                   xz      = only v1_x and v_3z are moved
                   yz      = only v2_x and v_3z are moved
                   xyz     = only v1_x, v2_x, v_3z are moved
                   shape   = all axis and angles, keeping the volume fixed
                   2Dxy    = only x and y components are allowed to change
                   2Dshape = as above, keeping the area in xy plane fixed
                   
                   BEWARE: if axis are not orthogonal, some of these options do not
                    work (symmetry is broken). If you are not happy with them,
                    edit subroutine init_dofree in file Module/cell_base.f90
   +--------------------------------------------------------------------
   
===END OF NAMELIST======================================================


========================================================================
CARD: ATOMIC_SPECIES 

   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      ATOMIC_SPECIES 
         X(1)     Mass_X(1)     PseudoPot_X(1)     
         X(2)     Mass_X(2)     PseudoPot_X(2)     
         . . . 
         X(ntyp)  Mass_X(ntyp)  PseudoPot_X(ntyp)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       X
      
      Type:           CHARACTER
      Description:    label of the atom. Acceptable syntax:
                      chemical symbol X (1 or 2 characters, case-insensitive)
                      or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       Mass_X
      
      Type:           REAL
      Description:    mass of the atomic species [amu: mass of C = 12]
                      not used if calculation='scf', 'nscf', 'bands'
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       PseudoPot_X
      
      Type:           CHARACTER
      Description:    File containing PP for this species.
                      
                      The pseudopotential file is assumed to be in the new UPF format.
                      If it doesn't work, the pseudopotential format is determined by
                      the file name:
                      
                      *.vdb or *.van     Vanderbilt US pseudopotential code
                      *.RRKJ3            Andrea Dal Corso's code (old format)
                      none of the above  old PWscf norm-conserving format
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: ATOMIC_POSITIONS {  alat | bohr | angstrom | crystal   }

   ________________________________________________________________________
   * IF calculation == 'bands' OR calculation == 'nscf' : 
   
      Specified atomic positions will be IGNORED and those from the
      previous scf calculation will be used instead !!!
      
       
   * ELSE IF  : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         ATOMIC_POSITIONS {  alat | bohr | angstrom | crystal   }
            X(1)    x(1)    y(1)    z(1)    {  if_pos(1)(1)    if_pos(2)(1)    if_pos(3)(1)    }  
            X(2)    x(2)    y(2)    z(2)    {  if_pos(1)(2)    if_pos(2)(2)    if_pos(3)(2)    }  
            . . . 
            X(nat)  x(nat)  y(nat)  z(nat)  {  if_pos(1)(nat)  if_pos(2)(nat)  if_pos(3)(nat)  }  
      
      /////////////////////////////////////////
      
       
   ENDIF
   ________________________________________________________________________
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   {  alat | bohr | angstrom | crystal   }
      
      Default:        alat
      Description:    alat    : atomic positions are in cartesian coordinates,
                                in units of the lattice parameter "a" (default)
                      
                      bohr    : atomic positions are in cartesian coordinate,
                                in atomic units (i.e. Bohr)
                      
                      angstrom: atomic positions are in cartesian coordinates,
                                in Angstrom
                      
                      crystal : atomic positions are in crystal coordinates, i.e.
                                in relative coordinates of the primitive lattice vectors (see below)
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variable:       X
      
      Type:           CHARACTER
      Description:    label of the atom as specified in ATOMIC_SPECIES
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      x, y, z
      
      Type:           REAL
      Description:    atomic positions
                      
                      NOTE: each atomic coordinate can also be specified as a simple algebraic expression.
                            To be interpreted correctly expression must NOT contain any blank
                            space and must NOT start with a "+" sign. The available expressions are:
                      
                              + (plus), - (minus), / (division), * (multiplication), ^ (power)
                      
                           All numerical constants included are considered as double-precision numbers;
                           i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are
                           not available, although sqrt can be replaced with ^(1/2).
                      
                          Example:
                                       C  1/3   1/2*3^(-1/2)   0
                      
                          is equivalent to
                      
                                  C  0.333333  0.288675  0.000000
                      
                          Please note that this feature is NOT supported by XCrysDen (which will
                          display a wrong structure, or nothing at all).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      if_pos(1), if_pos(2), if_pos(3)
      
      Type:           INTEGER
      Default:        1
      Description:    component i of the force for this atom is multiplied by if_pos(i),
                      which must be either 0 or 1.  Used to keep selected atoms and/or
                      selected components fixed in MD dynamics or
                      structural optimization run.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: K_POINTS {  tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c   }

   ________________________________________________________________________
   * IF tpiba  OR  crystal  OR  tpiba_b  OR  crystal_b OR tpiba_c OR crystal_c : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c 
            nks
            xk_x(1)    xk_y(1)    xk_z(1)    wk(1)    
            xk_x(2)    xk_y(2)    xk_z(2)    wk(2)    
            . . . 
            xk_x(nks)  xk_y(nks)  xk_z(nks)  wk(nks)  
      
      /////////////////////////////////////////
      
       
   * ELSE IF automatic : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS automatic
            nk1 nk2 nk3 sk1 sk2 sk3
      
      /////////////////////////////////////////
      
       
   * ELSE IF gamma : 
   
      /////////////////////////////////////////
      // Syntax:                             //
      /////////////////////////////////////////
      
         K_POINTS gamma
      
      /////////////////////////////////////////
      
       
   ENDIF
   ________________________________________________________________________
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   {  tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c   }
      
      Default:        tbipa
      Description:    tpiba    : read k-points in cartesian coordinates,
                                  in units of 2 pi/a (default)
                      
                       automatic: automatically generated uniform grid of k-points, i.e,
                                  generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset.
                                  nk1, nk2, nk3 as in Monkhorst-Pack grids
                                  k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced
                                  by half a grid step in the corresponding direction )
                                  BEWARE: only grids having the full symmetry of the crystal
                                  work with tetrahedra. Some grids with offset may not work.
                      
                       crystal  : read k-points in crystal coordinates, i.e. in relative
                                  coordinates of the reciprocal lattice vectors
                      
                       gamma    : use k = 0 (no need to list k-point specifications after card)
                                  In this case wavefunctions can be chosen as real,
                                  and specialized subroutines optimized for calculations
                                  at the gamma point are used (memory and cpu requirements
                                  are reduced by approximately one half).
                      
                       tpiba_b  : Used for band-structure plots.
                                  k-points are in units of  2 pi/a.
                                  nks points specify nks-1 lines in reciprocal space.
                                  Every couple of points identifies the initial and
                                  final point of a line. pw.x generates N
                                  intermediate points of the line where N is the
                                  weight of the first point.
                      
                       crystal_b: as tpiba_b, but k-points are in crystal coordinates.
                      
                       tpiba_c  : Used for band-structure contour plots.
                                  k-points are in units of  2 pi/a. nks must be 3.
                                  3 k-points k_0, k_1, and k_2 specify a rectangle
                                  in reciprocal space of vertices k_0, k_1, k_2,
                                  k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+
                                  \beta (k_2-k_0) with 0<\alpha,\beta < 1.
                                  The code produces a uniform mesh n1 x n2
                                  k points in this rectangle. n1 and n2 are
                                  the weights of k_1 and k_2. The weight of k_0
                                  is not used.
                      
                      crystal_c: as tpiba_c, but k-points are in crystal coordinates.
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variable:       nks
      
      Type:           INTEGER
      Description:    Number of supplied special k-points.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      xk_x, xk_y, xk_z, wk
      
      Type:           REAL
      Description:    Special k-points (xk_x/y/z) in the irreducible Brillouin Zone
                      (IBZ) of the lattice (with all symmetries) and weights (wk)
                      See the literature for lists of special points and
                      the corresponding weights.
                      
                      If the symmetry is lower than the full symmetry
                      of the lattice, additional points with appropriate
                      weights are generated. Notice that such procedure
                      assumes that ONLY k-points in the IBZ are provided in input
                      
                      In a non-scf calculation, weights do not affect the results.
                      If you just need eigenvalues and eigenvectors (for instance,
                      for a band-structure plot), weights can be set to any value
                      (for instance all equal to 1).
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      nk1, nk2, nk3
      
      Type:           INTEGER
      Description:    These parameters specify the k-point grid
                      (nk1 x nk2 x nk3) as in Monkhorst-Pack grids.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      sk1, sk2, sk3
      
      Type:           INTEGER
      Description:    The grid offsets;  sk1, sk2, sk3 must be
                      0 ( no offset ) or 1 ( grid displaced by
                      half a grid step in the corresponding direction ).
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: CELL_PARAMETERS {  alat | bohr | angstrom   }

   OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE !
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      CELL_PARAMETERS {  alat | bohr | angstrom   }
         v1(1)  v1(2)  v1(3)  
         v2(1)  v2(2)  v2(3)  
         v3(1)  v3(2)  v3(3)  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Card's flags:   {  alat | bohr | angstrom   }
      
      Description:    bohr / angstrom: lattice vectors in bohr radii / angstrom.
                      alat or nothing specified: if a lattice constant (celldm(1)
                      or a) is present, lattice vectors are in units of the lattice
                      constant; otherwise, in bohr radii or angstrom, as specified.
      +--------------------------------------------------------------------


      +--------------------------------------------------------------------
      Variables:      v1, v2, v3
      
      Type:           REAL
      Description:    Crystal lattice vectors (in cartesian axis):
                          v1(1)  v1(2)  v1(3)    ... 1st lattice vector
                          v2(1)  v2(2)  v2(3)    ... 2nd lattice vector
                          v3(1)  v3(2)  v3(3)    ... 3rd lattice vector
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: CONSTRAINTS 

   OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS
   (ONLY IF ION_DYNAMICS='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED)
   
   When this card is present the SHAKE algorithm is automatically used.
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      CONSTRAINTS 
         nconstr { constr_tol }
         constr_type(1)        constr(1)(1)        constr(2)(1)        [  constr(3)(1)        constr(4)(1)        ]  {  constr_target(1)        }  
         constr_type(2)        constr(1)(2)        constr(2)(2)        [  constr(3)(2)        constr(4)(2)        ]  {  constr_target(2)        }  
         . . . 
         constr_type(nconstr)  constr(1)(nconstr)  constr(2)(nconstr)  [  constr(3)(nconstr)  constr(4)(nconstr)  ]  {  constr_target(nconstr)  }  
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       nconstr
      
      Type:           INTEGER
      Description:    Number of constraints.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_tol
      
      Type:           REAL
      Description:    Tolerance for keeping the constraints satisfied.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_type
      
      Type:           CHARACTER
      Description:    Type of constrain :
                      
                      'type_coord'      : constraint on global coordination-number, i.e. the
                                          average number of atoms of type B surrounding the
                                          atoms of type A. The coordination is defined by
                                          using a Fermi-Dirac.
                                          (four indexes must be specified).
                      
                      'atom_coord'      : constraint on local coordination-number, i.e. the
                                          average number of atoms of type A surrounding a
                                          specific atom. The coordination is defined by
                                          using a Fermi-Dirac.
                                          (four indexes must be specified).
                      
                      'distance'        : constraint on interatomic distance
                                          (two atom indexes must be specified).
                      
                      'planar_angle'    : constraint on planar angle
                                          (three atom indexes must be specified).
                      
                      'torsional_angle' : constraint on torsional angle
                                          (four atom indexes must be specified).
                      
                      'bennett_proj'    : constraint on the projection onto a given direction
                                          of the vector defined by the position of one atom
                                          minus the center of mass of the others.
                                          G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010)
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variables:      constr(1), constr(2), constr(3), constr(4)
      
      Description:    These variables have different meanings
                                            for different constraint types:
                      
                                           'type_coord' : constr(1) is the first index of the
                                                          atomic type involved
                                                          constr(2) is the second index of the
                                                          atomic type involved
                                                          constr(3) is the cut-off radius for
                                                          estimating the coordination
                                                          constr(4) is a smoothing parameter
                      
                                           'atom_coord' : constr(1) is the atom index of the
                                                          atom with constrained coordination
                                                          constr(2) is the index of the atomic
                                                          type involved in the coordination
                                                          constr(3) is the cut-off radius for
                                                          estimating the coordination
                                                          constr(4) is a smoothing parameter
                      
                                             'distance' : atoms indices object of the
                                                          constraint, as they appear in
                                                          the 'ATOMIC_POSITION' CARD
                      
                      'planar_angle', 'torsional_angle' : atoms indices object of the
                                                          constraint, as they appear in the
                                                          'ATOMIC_POSITION' CARD (beware the
                                                          order)
                      
                                         'bennett_proj' : constr(1) is the index of the atom
                                                          whose position is constrained.
                                                          constr(2:4) are the three coordinates
                                                          of the vector that specifies the
                                                          constraint direction.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       constr_target
      
      Type:           REAL
      Description:    Target for the constrain ( angles are specified in degrees ).
                      This variable is optional.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================


========================================================================
CARD: OCCUPATIONS 

   OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE !
   
   /////////////////////////////////////////
   // Syntax:                             //
   /////////////////////////////////////////
   
      OCCUPATIONS 
           f_inp1(1)  f_inp1(2)  . . .  f_inp1(nbnd)  
         [ f_inp2(1)  f_inp2(2)  . . .  f_inp2(nbnd)  ] 
         
   
   /////////////////////////////////////////
   
   DESCRIPTION OF ITEMS:
   
      +--------------------------------------------------------------------
      Variable:       f_inp1
      
      Type:           REAL
      Description:    Occupations of individual states (MAX 10 PER ROW).
                      For spin-polarized calculations, these are majority spin states.
      +--------------------------------------------------------------------
      
      +--------------------------------------------------------------------
      Variable:       f_inp2
      
      Type:           REAL
      Description:    Occupations of minority spin states (MAX 10 PER ROW)
                      To be specified only for spin-polarized calculations.
      +--------------------------------------------------------------------
      
===END OF CARD==========================================================