------------------------------------------------------------------------ INPUT FILE DESCRIPTION Program: pw.x / PWscf / Quantum Espresso ------------------------------------------------------------------------ Input data format: { } = optional, [ ] = it depends, | = or All quantities whose dimensions are not explicitly specified are in RYDBERG ATOMIC UNITS. Charge is "number" charge (i.e. not multiplied by e); potentials are in energy units (i.e. they are multiplied by e) BEWARE: TABS, DOS <CR><LF> CHARACTERS ARE POTENTIAL SOURCES OF TROUBLE Comment lines in namelists can be introduced by a "!", exactly as in fortran code. Comments lines in ``cards'' can be introduced by either a "!" or a "#" character in the first position of a line. Structure of the input data: =============================================================================== &CONTROL ... / &SYSTEM ... / &ELECTRONS ... / [ &IONS ... / ] [ &CELL ... / ] ATOMIC_SPECIES X Mass_X PseudoPot_X Y Mass_Y PseudoPot_Y Z Mass_Z PseudoPot_Z ATOMIC_POSITIONS { alat | bohr | crystal | angstrom } X 0.0 0.0 0.0 {if_pos(1) if_pos(2) if_pos(3)} Y 0.5 0.0 0.0 Z O.0 0.2 0.2 K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } if (gamma) nothing to read if (automatic) nk1, nk2, nk3, k1, k2, k3 if (not automatic) nks xk_x, xk_y, xk_z, wk [ CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ] [ OCCUPATIONS f_inp1(1) f_inp1(2) f_inp1(3) ... f_inp1(10) f_inp1(11) f_inp1(12) ... f_inp1(nbnd) [ f_inp2(1) f_inp2(2) f_inp2(3) ... f_inp2(10) f_inp2(11) f_inp2(12) ... f_inp2(nbnd) ] ] [ CONSTRAINTS nconstr { constr_tol } constr_type(.) constr(1,.) constr(2,.) [ constr(3,.) constr(4,.) ] { constr_target(.) } ] ======================================================================== NAMELIST: &CONTROL +-------------------------------------------------------------------- Variable: calculation Type: CHARACTER Default: 'scf' Description: a string describing the task to be performed: 'scf', 'nscf', 'bands', 'relax', 'md', 'vc-relax', 'vc-md' (vc = variable-cell). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: title Type: CHARACTER Default: ' ' Description: reprinted on output. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: verbosity Type: CHARACTER Default: 'low' Description: Currently two verbosity levels are implemented: 'high' and 'low'. 'debug' and 'medium' have the same effect as 'high'; 'default' and 'minimal', as 'low' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: restart_mode Type: CHARACTER Default: 'from_scratch' Description: 'from_scratch' : from scratch. This is the normal way to perform a PWscf calculation 'restart' : from previous interrupted run. Use this switch only if you want to continue an interrupted calculation, not to start a new one. See also startingpot, startingwfc +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wf_collect Type: LOGICAL Default: .FALSE. Description: This flag controls the way wavefunctions are stored to disk : .TRUE. collect wavefunctions from all processors, store them into the output data directory outdir/prefix.save, one wavefunction per k-point in subdirs K000001/, K000001/, etc. .FALSE. do not collect wavefunctions, leave them in temporary local files (one per processor). The resulting format will be readable only by jobs running on the same number of processors and pools. Useful if you do not need the wavefunction or if you want to reduce the I/O or the disk occupancy. Note that this flag has no effect on reading, only on writing. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nstep Type: INTEGER Description: number of ionic + electronic steps Default: 1 if calculation = 'scf', 'nscf', 'bands'; 50 for the other cases +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: iprint Type: INTEGER Default: write only at convergence Description: band energies are written every iprint iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tstress Type: LOGICAL Default: .false. Description: calculate stress. It is set to .TRUE. automatically if calculation='vc-md' or 'vc-relax' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tprnfor Type: LOGICAL Description: print forces. Set to .TRUE. if calculation='relax','md','vc-md' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dt Type: REAL Default: 20.D0 Description: time step for molecular dynamics, in Rydberg atomic units (1 a.u.=4.8378 * 10^-17 s : beware, the CP code uses Hartree atomic units, half that much!!!) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: outdir Type: CHARACTER Default: value of the ESPRESSO_TMPDIR environment variable if set; current directory ('./') otherwise Description: input, temporary, output files are found in this directory, see also 'wfcdir' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfcdir Type: CHARACTER Default: same as outdir Description: this directory specifies where to store files generated by each processor (*.wfc{N}, *.igk{N}, etc.). The idea here is to be able to separately store the largest files, while the files necessary for restarting still go into 'outdir' (for now only works for stand alone PW ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: prefix Type: CHARACTER Default: 'pwscf' Description: prepended to input/output filenames: prefix.wfc, prefix.rho, etc. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lkpoint_dir Type: LOGICAL Default: .true. Description: If .false. a subdirectory for each k_point is not opened in the prefix.save directory; Kohn-Sham eigenvalues are stored instead in a single file for all k-points. Currently doesn't work together with wf_collect +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: max_seconds Type: REAL Default: 1.D+7, or 150 days, i.e. no time limit Description: jobs stops after max_seconds CPU time +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: etot_conv_thr Type: REAL Default: 1.0D-4 Description: convergence threshold on total energy (a.u) for ionic minimization: the convergence criterion is satisfied when the total energy changes less than etot_conv_thr between two consecutive scf steps. Note that etot_conv_thr is extensive, like the total energy. See also forc_conv_thr - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: forc_conv_thr Type: REAL Default: 1.0D-3 Description: convergence threshold on forces (a.u) for ionic minimization: the convergence criterion is satisfied when all components of all forces are smaller than forc_conv_thr. See also etot_conv_thr (note that the latter is extensive, forc_conv_thr is not) - both criteria must be satisfied +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: disk_io Type: CHARACTER Default: 'default' Description: Specifies the amount of disk I/O activity 'high': save all data at each SCF step 'default': save wavefunctions at each SCF step unless there is a single k-point per process 'low' : store wfc in memory, save only at the end 'none': do not save wfc, not even at the end (guaranteed to work only for 'scf', 'nscf', 'bands' calculations) If restarting from an interrupted calculation, the code will try to figure out what is available on disk. The more you write, the more complete the restart will be. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pseudo_dir Type: CHARACTER Default: value of the $ESPRESSO_PSEUDO environment variable if set; '$HOME/espresso/pseudo/' otherwise Description: directory containing pseudopotential files +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tefield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a saw-like potential simulating an electric field is added to the bare ionic potential. See variables edir, eamp, emaxpos, eopreg for the form and size of the added potential. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: dipfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. and tefield=.TRUE. a dipole correction is also added to the bare ionic potential - implements the recipe of L. Bengtsson, PRB 59, 12301 (1999). See variables edir, emaxpos, eopreg for the form of the correction, that must be used only in a slab geometry, for surface calculations, with the discontinuity in the empty space. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lelfield Type: LOGICAL Default: .FALSE. Description: If .TRUE. a homogeneous finite electric field described through the modern theory of the polarization is applied. This is different from "tefield=.true." ! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nberrycyc Type: INTEGER Default: 1 Description: In the case of a finite electric field ( lelfield == .TRUE. ) it defines the number of iterations for converging the wavefunctions in the electric field Hamiltonian, for each external iteration on the charge density +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lorbm Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform orbital magnetization calculation. If finite electric field is applied (lelfield=.true.) only Kubo terms are computed [for details see New J. Phys. 12, 053032 (2010)]. The type of calculation is nscf and should be performed on an automatically generated uniform grid of k points. Works with norm-conserving pseudopotentials. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lberry Type: LOGICAL Default: .FALSE. Description: If .TRUE. perform a Berry phase calculation See the header of PW/bp_c_phase.f90 for documentation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: gdir Type: INTEGER Description: For Berry phase calculation: direction of the k-point strings in reciprocal space. Allowed values: 1, 2, 3 1=first, 2=second, 3=third reciprocal lattice vector For calculations with finite electric fields (lelfield==.true.), gdir is the direction of the field +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nppstr Type: INTEGER Description: For Berry phase calculation: number of k-points to be calculated along each symmetry-reduced string The same for calculation with finite electric fields (lelfield==.true.) +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &SYSTEM +-------------------------------------------------------------------- Variable: ibrav Type: INTEGER Status: REQUIRED Description: Bravais-lattice index. In all cases except ibrav=0, either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc] must be specified: see their description. For ibrav=0 you may specify the lattice parameter celldm(1) or a. ibrav structure celldm(2)-celldm(6) or: b,c,cosab,cosac,cosbc 0 free crystal axis provided in input: see card CELL_PARAMETERS 1 cubic P (sc) v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1) 2 cubic F (fcc) v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0) 3 cubic I (bcc) v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1) 4 Hexagonal and Trigonal P celldm(3)=c/a v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a) 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around the z-axis, the primitive cell is a simple rhombohedron: v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz) where c=cos(alpha) is the cosine of the angle alpha between any pair of crystallographic vectors, tx, ty, tz are: tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3) -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha) The crystallographic vectors form a three-fold star around <111>. Defining a' = a/sqrt(3) : v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u) where u and v are defined as u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty and tx, ty, tz as for case ibrav=5 6 Tetragonal P (st) celldm(3)=c/a v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a) 7 Tetragonal I (bct) celldm(3)=c/a v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a) 8 Orthorhombic P celldm(2)=b/a celldm(3)=c/a v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c) 9 Orthorhombic base-centered(bco) celldm(2)=b/a celldm(3)=c/a v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c) -9 as 9, alternate description v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c) 10 Orthorhombic face-centered celldm(2)=b/a celldm(3)=c/a v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2) 11 Orthorhombic body-centered celldm(2)=b/a celldm(3)=c/a v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2) 12 Monoclinic P, unique axis c celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c) where gamma is the angle between axis a and b. -12 Monoclinic P, unique axis b celldm(2)=b/a celldm(3)=c/a, celldm(5)=cos(ac) v1 = (a,0,0), v2 = (0,b,0), v3 = (c*sin(beta),0,c*cos(beta)) where beta is the angle between axis a and c 13 Monoclinic base-centered celldm(2)=b/a celldm(3)=c/a, celldm(4)=cos(ab) v1 = ( a/2, 0, -c/2), v2 = (b*cos(gamma), b*sin(gamma), 0), v3 = ( a/2, 0, c/2), where gamma is the angle between axis a and b 14 Triclinic celldm(2)= b/a, celldm(3)= c/a, celldm(4)= cos(bc), celldm(5)= cos(ac), celldm(6)= cos(ab) v1 = (a, 0, 0), v2 = (b*cos(gamma), b*sin(gamma), 0) v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma), c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma) - cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) ) where alpha is the angle between axis b and c beta is the angle between axis a and c gamma is the angle between axis a and b +-------------------------------------------------------------------- ///--- EITHER: +-------------------------------------------------------------------- Variable: celldm(i), i=1,6 Type: REAL See: ibrav Description: Crystallographic constants - see description of ibrav variable. * alat = celldm(1) is the lattice parameter "a" (in BOHR) * only needed celldm (depending on ibrav) must be specified * if ibrav=0 only alat = celldm(1) is used (if present) +-------------------------------------------------------------------- OR: +-------------------------------------------------------------------- Variables: A, B, C, cosAB, cosAC, cosBC Type: REAL Description: Traditional crystallographic constants: a,b,c in ANGSTROM cosAB = cosine of the angle between axis a and b (gamma) cosAC = cosine of the angle between axis a and c (beta) cosBC = cosine of the angle between axis b and c (alpha) specify either these OR celldm but NOT both. The axis are chosen according to the value of ibrav. If ibrav is not specified, the axis are taken from card CELL_PARAMETERS and only a is used as lattice parameter. +-------------------------------------------------------------------- \\\--- +-------------------------------------------------------------------- Variable: nat Type: INTEGER Status: REQUIRED Description: number of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ntyp Type: INTEGER Status: REQUIRED Description: number of types of atoms in the unit cell +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nbnd Type: INTEGER Default: for an insulator, nbnd = number of valence bands (nbnd = # of electrons /2); for a metal, 20% more (minimum 4 more) Description: number of electronic states (bands) to be calculated. Note that in spin-polarized calculations the number of k-point, not the number of bands per k-point, is doubled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_charge Type: REAL Default: 0.0 Description: total charge of the system. Useful for simulations with charged cells. By default the unit cell is assumed to be neutral (tot_charge=0). tot_charge=+1 means one electron missing from the system, tot_charge=-1 means one additional electron, and so on. In a periodic calculation a compensating jellium background is inserted to remove divergences if the cell is not neutral. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tot_magnetization Type: REAL Default: -1 [unspecified] Description: total majority spin charge - minority spin charge. Used to impose a specific total electronic magnetization. If unspecified then tot_magnetization variable is ignored and the amount of electronic magnetization is determined during the self-consistent cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_magnetization(i), i=1,ntyp Type: REAL Description: starting spin polarization on atomic type 'i' in a spin polarized calculation. Values range between -1 (all spins down for the valence electrons of atom type 'i') to 1 (all spins up). Breaks the symmetry and provides a starting point for self-consistency. The default value is zero, BUT a value MUST be specified for AT LEAST one atomic type in spin polarized calculations, unless you constrain the magnetization (see "tot_magnetization" and "constrained_magnetization"). Note that if you start from zero initial magnetization, you will invariably end up in a nonmagnetic (zero magnetization) state. If you want to start from an antiferromagnetic state, you may need to define two different atomic species corresponding to sublattices of the same atomic type. starting_magnetization is ignored if you are performing a non-scf calculation, if you are restarting from a previous run, or restarting from an interrupted run. If you fix the magnetization with "tot_magnetization", you should not specify starting_magnetization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutwfc Type: REAL Status: REQUIRED Description: kinetic energy cutoff (Ry) for wavefunctions +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutrho Type: REAL Default: 4 * ecutwfc Description: kinetic energy cutoff (Ry) for charge density and potential For norm-conserving pseudopotential you should stick to the default value, you can reduce it by a little but it will introduce noise especially on forces and stress. If there are ultrasoft PP, a larger value than the default is often desirable (ecutrho = 8 to 12 times ecutwfc, typically). PAW datasets can often be used at 4*ecutwfc, but it depends on the shape of augmentation charge: testing is mandatory. The use of gradient-corrected functional, especially in cells with vacuum, or for pseudopotential without non-linear core correction, usually requires an higher values of ecutrho to be accurately converged. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutfock Type: REAL Default: ecutrho Description: kinetic energy cutoff (Ry) for the exact exchange operator in EXX type calculations. By default this is the same as ecutrho but in some EXX calculations significant speed-up can be found by reducing ecutfock, at the expense of some loss in accuracy. Currently only implemented for the optimized gamma point only calculations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1, nr2, nr3 Type: INTEGER Description: three-dimensional FFT mesh (hard grid) for charge density (and scf potential). If not specified the grid is calculated based on the cutoff for charge density (see also "ecutrho") +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nr1s, nr2s, nr3s Type: INTEGER Description: three-dimensional mesh for wavefunction FFT and for the smooth part of charge density ( smooth grid ). Coincides with nr1, nr2, nr3 if ecutrho = 4 * ecutwfc ( default ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) symmetry is not used. Note that - if the k-point grid is provided in input, it is used "as is" and symmetry-inequivalent k-points are not generated; - if the k-point grid is automatically generated, it will contain only points in the irreducible BZ for the bravais lattice, irrespective of the actual crystal symmetry. A careful usage of this option can be advantageous - in low-symmetry large cells, if you cannot afford a k-point grid with the correct symmetry - in MD simulations - in calculations for isolated atoms +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nosym_evc Type: LOGICAL Default: .FALSE. Description: if(.TRUE.) symmetry is not used but the k-points are forced to have the symmetry of the Bravais lattice; an automatically generated k-point grid will contain all the k-points of the grid and the points rotated by the symmetries of the Bravais lattice which are not in the original grid. If available, time reversal is used to reduce the k-points (and the q => -q symmetry is used in the phonon code). To disable also this symmetry set noinv=.TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noinv Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of k => -k symmetry (time reversal) in k-point generation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: no_t_rev Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) disable the usage of magnetic symmetry operations that consist in a rotation + time reversal. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: force_symmorphic Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) force the symmetry group to be symmorphic by disabling symmetry operations having an associated fractionary translation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: use_all_frac Type: LOGICAL Default: .FALSE. Description: if (.TRUE.) do not discard symmetry operations with an associated fractionary translation that does not send the real-space FFT grid into itself. These operations are incompatible with real-space symmetrization but not with the new G-space symmetrization. BEWARE: do not use for phonons! The phonon code still uses real-space symmetrization. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: occupations Type: CHARACTER Description: 'smearing': gaussian smearing for metals requires a value for degauss 'tetrahedra' : especially suited for calculation of DOS (see P.E. Bloechl, PRB49, 16223 (1994)) Requires uniform grid of k-points, automatically generated (see below) Not suitable (because not variational) for force/optimization/dynamics calculations 'fixed' : for insulators with a gap 'from_input' : The occupation are read from input file. Requires "nbnd" to be set in input. Occupations should be consistent with the value of "tot_charge". +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: one_atom_occupations Type: LOGICAL Default: .FALSE. Description: This flag is used for isolated atoms (nat=1) together with occupations='from_input'. If it is .TRUE., the wavefunctions are ordered as the atomic starting wavefunctions, independently from their eigenvalue. The occupations indicate which atomic states are filled. The order of the states is written inside the UPF pseudopotential file. In the scalar relativistic case: S -> l=0, m=0 P -> l=1, z, x, y D -> l=2, r^2-3z^2, xz, yz, xy, x^2-y^2 In the noncollinear magnetic case (with or without spin-orbit), each group of states is doubled. For instance: P -> l=1, z, x, y for spin up, l=1, z, x, y for spin down. Up and down is relative to the direction of the starting magnetization. In the case with spin-orbit and time-reversal (starting_magnetization=0.0) the atomic wavefunctions are radial functions multiplied by spin-angle functions. For instance: P -> l=1, j=1/2, m_j=-1/2,1/2. l=1, j=3/2, m_j=-3/2, -1/2, 1/2, 3/2. In the magnetic case with spin-orbit the atomic wavefunctions can be forced to be spin-angle functions by setting starting_spin_angle to .TRUE.. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_spin_angle Type: LOGICAL Default: .FALSE. Description: In the spin-orbit case when domag=.TRUE., by default, the starting wavefunctions are initialized as in scalar relativistic noncollinear case without spin-orbit. By setting starting_spin_angle=.TRUE. this behaviour can be changed and the initial wavefunctions are radial functions multiplied by spin-angle functions. When domag=.FALSE. the initial wavefunctions are always radial functions multiplied by spin-angle functions independently from this flag. When lspinorb is .FALSE. this flag is not used. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: degauss Type: REAL Default: 0.D0 Ry Description: value of the gaussian spreading (Ry) for brillouin-zone integration in metals. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: smearing Type: CHARACTER Default: 'gaussian' Description: 'gaussian', 'gauss': ordinary Gaussian spreading (Default) 'methfessel-paxton', 'm-p', 'mp': Methfessel-Paxton first-order spreading (see PRB 40, 3616 (1989)). 'marzari-vanderbilt', 'cold', 'm-v', 'mv': Marzari-Vanderbilt cold smearing (see PRL 82, 3296 (1999)) 'fermi-dirac', 'f-d', 'fd': smearing with Fermi-Dirac function +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nspin Type: INTEGER Default: 1 Description: nspin = 1 : non-polarized calculation (default) nspin = 2 : spin-polarized calculation, LSDA (magnetization along z axis) nspin = 4 : spin-polarized calculation, noncollinear (magnetization in generic direction) DO NOT specify nspin in this case; specify "noncolin=.TRUE." instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: noncolin Type: LOGICAL Default: .false. Description: if .true. the program will perform a noncollinear calculation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecfixed Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: qcutz Type: REAL Default: 0.0 See: q2sigma +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: q2sigma Type: REAL Default: 0.1 Description: ecfixed, qcutz, q2sigma: parameters for modified functional to be used in variable-cell molecular dynamics (or in stress calculation). "ecfixed" is the value (in Rydberg) of the constant-cutoff; "qcutz" and "q2sigma" are the height and the width (in Rydberg) of the energy step for reciprocal vectors whose square modulus is greater than "ecfixed". In the kinetic energy, G^2 is replaced by G^2 + qcutz * (1 + erf ( (G^2 - ecfixed)/q2sigma) ) See: M. Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: input_dft Type: CHARACTER Default: read from pseudopotential files Description: Exchange-correlation functional: eg 'PBE', 'BLYP' etc See Modules/functionals.f90 for allowed values. Overrides the value read from pseudopotential files. Use with care and if you know what you are doing! +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exx_fraction Type: REAL Default: it depends on the specified functional Description: Fraction of EXX for hybrid functional calculations. In the case of input_dft='PBE0', the default value is 0.25, while for input_dft='B3LYP' the exx_fraction default value is 0.20. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: screening_parameter Type: REAL Default: 0.106 Description: screening_parameter for HSE like hybrid functionals. See J. Chem. Phys. 118, 8207 (2003) and J. Chem. Phys. 124, 219906 (2006) for more informations. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: exxdiv_treatment Type: CHARACTER Default: gygi-baldereschi Description: Specific for EXX. It selects the kind of approach to be used for treating the Coulomb potential divergencies at small q vectors. gygi-baldereschi : appropriate for cubic and quasi-cubic supercells vcut_spherical : appropriate for cubic and quasi-cubic supercells vcut_ws : appropriate for strongly anisotropic supercells, see also ecutvcut. none : sets Coulomb potential at G,q=0 to 0.0 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ecutvcut Type: REAL Default: 0.0 Ry See: exxdiv_treatment Description: Reciprocal space cutoff for correcting Coulomb potential divergencies at small q vectors. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nqx1, nqx2, nqx3 Type: INTEGER Description: three-dimensional mesh for q (k1-k2) sampling of the Fock operator (EXX). Can be smaller than the number of k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u Type: LOGICAL Default: .FALSE. Status: DFT+U (formerly known as LDA+U) currently works only for a few selected elements. Modify PW/set_hubbard_l.f90 and PW/tabd.f90 if you plan to use DFT+U with an element that is not configured there. Description: Specify lda_plus_u = .TRUE. to enable DFT+U calculations See: Anisimov, Zaanen, and Andersen, PRB 44, 943 (1991); Anisimov et al., PRB 48, 16929 (1993); Liechtenstein, Anisimov, and Zaanen, PRB 52, R5467 (1994). You must specify, for each species with a U term, the value of U and (optionally) alpha, J of the Hubbard model (all in eV): see lda_plus_u_kind, Hubbard_U, Hubbard_alpha, Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lda_plus_u_kind Type: INTEGER Default: 0 Description: Specifies the type of DFT+U calculation: 0 simplified version of Cococcioni and de Gironcoli, PRB 71, 035105 (2005), using Hubbard_U 1 rotationally invariant scheme of Liechtenstein et al., using Hubbard_U and Hubbard_J +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_U(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_U(i): U parameter (eV) for species i, DFT+U calculation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J0(i), i=1,ntype Type: REAL Default: 0.D0 for all species Description: Hubbard_J0(i): J0 parameter (eV) for species i, DFT+U+J calculation, see PRB 84, 115108 (2011) for details. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_alpha(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_alpha(i) is the perturbation (on atom i, in eV) used to compute U with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_beta(i), i=1,ntyp Type: REAL Default: 0.D0 for all species Description: Hubbard_beta(i) is the perturbation (on atom i, in eV) used to compute J0 with the linear-response method of Cococcioni and de Gironcoli, PRB 71, 35105 (2005) (only for lda_plus_u_kind=0). See also PRB 84, 115108 (2011). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Hubbard_J(i,ityp) Default: 0.D0 for all species Description: Hubbard_J(i,ityp): J parameters (eV) for species ityp, used in DFT+U calculations (only for lda_plus_u_kind=1) For p orbitals: J = Hubbard_J(1,ityp); For d orbitals: J = Hubbard_J(1,ityp), B = Hubbard_J(2,ityp); For f orbitals: J = Hubbard_J(1,ityp), E2 = Hubbard_J(2,ityp), E3= Hubbard_J(3,ityp). If B or E2 or E3 are not specified or set to 0 they will be calculated from J using atomic ratios. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: starting_ns_eigenvalue(m,ispin,I) Type: REAL Default: -1.d0 that means NOT SET Description: In the first iteration of an DFT+U run it overwrites the m-th eigenvalue of the ns occupation matrix for the ispin component of atomic species I. Leave unchanged eigenvalues that are not set. This is useful to suggest the desired orbital occupations when the default choice takes another path. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: U_projection_type Type: CHARACTER Default: 'atomic' Description: Only active when lda_plus_U is .true., specifies the type of projector on localized orbital to be used in the DFT+U scheme. Currently available choices: 'atomic': use atomic wfc's (as they are) to build the projector 'ortho-atomic': use Lowdin orthogonalized atomic wfc's 'norm-atomic': Lowdin normalization of atomic wfc. Keep in mind: atomic wfc are not orthogonalized in this case. This is a "quick and dirty" trick to be used when atomic wfc from the pseudopotential are not normalized (and thus produce occupation whose value exceeds unity). If orthogonalized wfc are not needed always try 'atomic' first. 'file': use the information from file "prefix".atwfc that must have been generated previously, for instance by pmw.x (see PP/poormanwannier.f90 for details). 'pseudo': use the pseudopotential projectors. The charge density outside the atomic core radii is excluded. N.B.: for atoms with +U, a pseudopotential with the all-electron atomic wavefunctions is required (i.e., as generated by ld1.x with lsave_wfc flag). NB: forces and stress currently implemented only for the 'atomic' and 'pseudo' choice. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: edir Type: INTEGER Description: The direction of the electric field or dipole correction is parallel to the bg(:,edir) reciprocal lattice vector, so the potential is constant in planes defined by FFT grid points; edir = 1, 2 or 3. Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: emaxpos Type: REAL Default: 0.5D0 Description: Position of the maximum of the saw-like potential along crystal axis "edir", within the unit cell (see below), 0 < emaxpos < 1 Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eopreg Type: REAL Default: 0.1D0 Description: Zone in the unit cell where the saw-like potential decreases. ( see below, 0 < eopreg < 1 ). Used only if tefield is .TRUE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: eamp Type: REAL Default: 0.001 a.u. Description: Amplitude of the electric field, in ***Hartree*** a.u.; 1 a.u. = 51.4220632*10^10 V/m). Used only if tefield=.TRUE. The saw-like potential increases with slope "eamp" in the region from (emaxpos+eopreg-1) to (emaxpos), then decreases to 0 until (emaxpos+eopreg), in units of the crystal vector "edir". Important: the change of slope of this potential must be located in the empty region, or else unphysical forces will result. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle1(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the initial magnetization and the z-axis. For noncollinear calculations only; index i runs over the atom types. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: angle2(i), i=1,ntyp Type: REAL Description: The angle expressed in degrees between the projection of the initial magnetization on x-y plane and the x-axis. For noncollinear calculations only. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constrained_magnetization Type: CHARACTER See: lambda, fixed_magnetization Default: 'none' Description: Used to perform constrained calculations in magnetic systems. Currently available choices: 'none': no constraint 'total': total magnetization is constrained by adding a penalty functional to the total energy: LAMBDA * SUM_{i} ( magnetization(i) - fixed_magnetization(i) )**2 where the sum over i runs over the three components of the magnetization. Lambda is a real number (see below). Noncolinear case only. Use "tot_magnetization" for LSDA 'atomic': atomic magnetization are constrained to the defined starting magnetization adding a penalty: LAMBDA * SUM_{i,itype} ( magnetic_moment(i,itype) - mcons(i,itype) )**2 where i runs over the cartesian components (or just z in the collinear case) and itype over the types (1-ntype). mcons(:,:) array is defined from starting_magnetization, (and angle1, angle2 in the non-collinear case). lambda is a real number 'total direction': the angle theta of the total magnetization with the z axis (theta = fixed_magnetization(3)) is constrained: LAMBDA * ( arccos(magnetization(3)/mag_tot) - theta )**2 where mag_tot is the modulus of the total magnetization. 'atomic direction': not all the components of the atomic magnetic moment are constrained but only the cosine of angle1, and the penalty functional is: LAMBDA * SUM_{itype} ( mag_mom(3,itype)/mag_mom_tot - cos(angle1(ityp)) )**2 N.B.: symmetrization may prevent to reach the desired orientation of the magnetization. Try not to start with very highly symmetric configurations or use the nosym flag (only as a last remedy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: fixed_magnetization(i), i=1,3 Type: REAL See: constrained_magnetization Default: 0.d0 Description: value of the total magnetization to be maintained fixed when constrained_magnetization='total' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lambda Type: REAL See: constrained_magnetization Default: 1.d0 Description: parameter used for constrained_magnetization calculations N.B.: if the scf calculation does not converge, try to reduce lambda to obtain convergence, then restart the run with a larger lambda +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: report Type: INTEGER Default: 1 Description: It is the number of iterations after which the program write all the atomic magnetic moments. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: lspinorb Type: LOGICAL Description: if .TRUE. the noncollinear code can use a pseudopotential with spin-orbit. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: assume_isolated Type: CHARACTER Default: 'none' Description: Used to perform calculation assuming the system to be isolated (a molecule or a cluster in a 3D supercell). Currently available choices: 'none' (default): regular periodic calculation w/o any correction. 'makov-payne', 'm-p', 'mp' : the Makov-Payne correction to the total energy is computed. An estimate of the vacuum level is also calculated so that eigenvalues can be properly aligned. ONLY FOR CUBIC SYSTEMS (ibrav=1,2,3) Theory: G.Makov, and M.C.Payne, "Periodic boundary conditions in ab initio calculations" , Phys.Rev.B 51, 4014 (1995) 'dcc' : density counter charge correction CURRENTLY DISABLED The electrostatic problem is solved in open boundary conditions (OBC). This approach provides the correct scf potential and energies (not just a correction to energies as 'mp'). BEWARE: the molecule should be centered around the middle of the cell, not around the origin (0,0,0). Theory described in: I.Dabo, B.Kozinsky, N.E.Singh-Miller and N.Marzari, "Electrostatic periodic boundary conditions and real-space corrections", Phys.Rev.B 77, 115139 (2008) 'martyna-tuckerman', 'm-t', 'mt' : Martyna-Tuckerman correction. As for the dcc correction the scf potential is also corrected. Implementation adapted from: G.J. Martyna, and M.E. Tuckerman, "A reciprocal space based method for treating long range interactions in ab-initio and force-field-based calculation in clusters", J.Chem.Phys. 110, 2810 (1999) 'esm' : Effective Screening Medium Method. For polarized or charged slab calculation, embeds the simulation cell within an effective semi- infinite medium in the perpendicular direction (along z). Embedding regions can be vacuum or semi-infinite metal electrodes (use 'esm_bc' to choose boundary conditions). If between two electrodes, an optional electric field ('esm_efield') may be applied. Method described in M. Otani and O. Sugino, "First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach," PRB 73, 115407 (2006). NB: Requires cell with a_3 lattice vector along z, normal to the xy plane, with the slab centered around z=0. Also requires symmetry checking to be disabled along z, either by setting 'nosym' = .TRUE. or by very slight displacement (i.e., 5e-4 a.u.) of the slab along z. See 'esm_bc', 'esm_efield', 'esm_w', 'esm_nfit'. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_bc Type: CHARACTER See: assume_isolated Default: 'pbc' Description: If assume_isolated = 'esm', determines the boundary conditions used for either side of the slab. Currently available choices: 'pbc' (default): regular periodic calculation (no ESM). 'bc1' : Vacuum-slab-vacuum (open boundary conditions) 'bc2' : Metal-slab-metal (dual electrode configuration). See also 'esm_efield'. 'bc3' : Vacuum-slab-metal +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_w Type: REAL See: assume_isolated Default: 0.d0 Description: If assume_isolated = 'esm', determines the position offset [in a.u.] of the start of the effective screening region, measured relative to the cell edge. (ESM region begins at z = +/- [L_z/2 + esm_w] ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_efield Type: REAL See: assume_isolated, esm_bc Default: 0.d0 Description: If assume_isolated = 'esm' and esm_bc = 'bc2', gives the magnitude of the electric field [Ry/a.u.] to be applied between semi-infinite ESM electrodes. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: esm_nfit Type: INTEGER See: assume_isolated Default: 4 Description: If assume_isolated = 'esm', gives the number of z-grid points for the polynomial fit along the cell edge. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london Type: LOGICAL Default: .FALSE. Description: if .TRUE. compute semi-empirical dispersion term (DFT-D). See S. Grimme, J. Comp. Chem. 27, 1787 (2006), and V. Barone et al., J. Comp. Chem. 30, 934 (2009). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_s6 Type: REAL Default: 0.75 Description: global scaling parameter for DFT-D. Default is good for PBE. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: london_rcut Type: REAL Default: 200 Description: cutoff radius (a.u.) for dispersion interactions +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &ELECTRONS +-------------------------------------------------------------------- Variable: electron_maxstep Type: INTEGER Default: 100 Description: maximum number of iterations in a scf step +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: scf_must_converge Type: LOGICAL Default: .TRUE. Description: If .false. do not stop molecular dynamics or ionic relaxation when electron_maxstep is reached. Use with care. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr Type: REAL Default: 1.D-6 Description: Convergence threshold for selfconsistency: estimated energy error < conv_thr (note that conv_thr is extensive, like the total energy) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: adaptive_thr Type: LOGICAL Default: .FALSE Description: If .TRUE. this turns on the use of an adaptive conv_thr for the inner scf loops when using EXX. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_init Type: REAL Default: 1.D-3 Description: When adaptive_thr = .TRUE. this is the convergence threshold used for the first scf cycle. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: conv_thr_multi Type: REAL Default: 1.D-1 Description: When adaptive_thr = .TRUE. the convergence threshold for each scf cycle is given by: min( conv_thr, conv_thr_multi * dexx ) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_mode Type: CHARACTER Default: 'plain' Description: 'plain' : charge density Broyden mixing 'TF' : as above, with simple Thomas-Fermi screening (for highly homogeneous systems) 'local-TF': as above, with local-density-dependent TF screening (for highly inhomogeneous systems) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_beta Type: REAL Default: 0.7D0 Description: mixing factor for self-consistency +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_ndim Type: INTEGER Default: 8 Description: number of iterations used in mixing scheme +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: mixing_fixed_ns Type: INTEGER Default: 0 Description: For DFT+U : number of iterations with fixed ns ( ns is the atomic density appearing in the Hubbard term ). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diagonalization Type: CHARACTER Default: 'david' Description: 'david': Davidson iterative diagonalization with overlap matrix (default). Fast, may in some rare cases fail. 'cg' : conjugate-gradient-like band-by-band diagonalization Typically slower than 'david' but it uses less memory and is more robust (it seldom fails) 'cg-serial', 'david-serial': obsolete, use "-ndiag 1 instead" The subspace diagonalization in Davidson is performed by a fully distributed-memory parallel algorithm on 4 or more processors, by default. The allocated memory scales down with the number of procs. Procs involved in diagonalization can be changed with command-line option "-ndiag N". On multicore CPUs it is often convenient to let just one core per CPU to work on linear algebra. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ortho_para Type: INTEGER Default: 0 Status: OBSOLETE: use command-line option " -ndiag XX" instead +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_thr_init Type: REAL Description: Convergence threshold for the first iterative diagonalization (the check is on eigenvalue convergence). For scf calculations, the default is 1.D-2 if starting from a superposition of atomic orbitals; 1.D-5 if starting from a charge density. During self consistency the threshold (ethr) is automatically reduced when approaching convergence. For non-scf calculations, this is the threshold used in the iterative diagonalization. The default is conv_thr /N elec. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_cg_maxiter Type: INTEGER Description: For conjugate gradient diagonalization: max number of iterations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_david_ndim Type: INTEGER Default: 4 Description: For Davidson diagonalization: dimension of workspace (number of wavefunction packets, at least 2 needed). A larger value may yield a somewhat faster algorithm but uses more memory. The opposite holds for smaller values. Try diago_david_ndim=2 if you are tight on memory or if your job is large: the speed penalty is often negligible +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: diago_full_acc Type: LOGICAL Default: .FALSE. Description: If .TRUE. all the empty states are diagonalized at the same level of accuracy of the occupied ones. Otherwise the empty states are diagonalized using a larger threshold (this should not affect total energy, forces, and other ground-state properties). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield Type: REAL Default: 0.D0 Description: Amplitude of the finite electric field (in Ry a.u.; 1 a.u. = 36.3609*10^10 V/m). Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are not automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: efield_cart(i), i=1,3 Type: REAL Default: (0.D0, 0.D0, 0.D0) Description: Finite electric field (in Ry a.u.=36.3609*10^10 V/m) in cartesian axis. Used only if lelfield=.TRUE. and if k-points (K_POINTS card) are automatic. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingpot Type: CHARACTER Description: 'atomic': starting potential from atomic charge superposition ( default for scf, *relax, *md ) 'file' : start from existing "charge-density.xml" file in the directory specified by variables "prefix" and "outdir" For nscf and bands calculation this is the default and the only sensible possibility. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: startingwfc Type: CHARACTER Default: 'atomic+random' Description: 'atomic': start from superposition of atomic orbitals If not enough atomic orbitals are available, fill with random numbers the remaining wfcs The scf typically starts better with this option, but in some high-symmetry cases one can "loose" valence states, ending up in the wrong ground state. 'atomic+random': as above, plus a superimposed "randomization" of atomic orbitals. Prevents the "loss" of states mentioned above. 'random': start from random wfcs. Slower start of scf but safe. It may also reduce memory usage in conjunction with diagonalization='cg' 'file': start from an existing wavefunction file in the directory specified by variables "prefix" and "outdir" +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tqr Type: LOGICAL Default: .FALSE. Description: If .true., use the real-space algorithm for augmentation charges in ultrasoft pseudopotentials. Must faster execution of ultrasoft-related calculations, but numerically less accurate than the default algorithm. Use with care and after testing! +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &IONS INPUT THIS NAMELIST ONLY IF CALCULATION = 'RELAX', 'MD', 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: ion_dynamics Type: CHARACTER Description: Specify the type of ionic dynamics. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm, based on the trust radius procedure, for structural relaxation 'damp' : use damped (quick-min Verlet) dynamics for structural relaxation Can be used for constrained optimisation: see CONSTRAINTS card CASE ( calculation = 'md' ) 'verlet' : (default) use Verlet algorithm to integrate Newton's equation. For constrained dynamics, see CONSTRAINTS card 'langevin' ion dynamics is over-damped Langevin CASE ( calculation = 'vc-relax' ) 'bfgs' : (default) use BFGS quasi-newton algorithm; cell_dynamics must be 'bfgs' too 'damp' : use damped (Beeman) dynamics for structural relaxation CASE ( calculation = 'vc-md' ) 'beeman' : (default) use Beeman algorithm to integrate Newton's equation +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: ion_positions Type: CHARACTER Default: 'default' Description: 'default ' : if restarting, use atomic positions read from the restart file; in all other cases, use atomic positions from standard input. 'from_input' : restart the simulation with atomic positions read from standard input, even if restarting. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: phase_space Type: CHARACTER Default: 'full' Description: 'full' : the full phase-space is used for the ionic dynamics. 'coarse-grained' : a coarse-grained phase-space, defined by a set of constraints, is used for the ionic dynamics (used for calculation of free-energy barriers) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: pot_extrapolation Type: CHARACTER Default: 'atomic' Description: Used to extrapolate the potential from preceding ionic steps. 'none' : no extrapolation 'atomic' : extrapolate the potential as if it was a sum of atomic-like orbitals 'first_order' : extrapolate the potential with first-order formula 'second_order': as above, with second order formula Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wfc_extrapolation Type: CHARACTER Default: 'none' Description: Used to extrapolate the wavefunctions from preceding ionic steps. 'none' : no extrapolation 'first_order' : extrapolate the wave-functions with first-order formula. 'second_order': as above, with second order formula. Note: 'first_order' and 'second-order' extrapolation make sense only for molecular dynamics calculations +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: remove_rigid_rot Type: LOGICAL Default: .FALSE. Description: This keyword is useful when simulating the dynamics and/or the thermodynamics of an isolated system. If set to true the total torque of the internal forces is set to zero by adding new forces that compensate the spurious interaction with the periodic images. This allows for the use of smaller supercells. BEWARE: since the potential energy is no longer consistent with the forces (it still contains the spurious interaction with the repeated images), the total energy is not conserved anymore. However the dynamical and thermodynamical properties should be in closer agreement with those of an isolated system. Also the final energy of a structural relaxation will be higher, but the relaxation itself should be faster. +-------------------------------------------------------------------- ///--- KEYWORDS USED FOR MOLECULAR DYNAMICS +-------------------------------------------------------------------- Variable: ion_temperature Type: CHARACTER Default: 'not_controlled' Description: 'rescaling' control ionic temperature via velocity rescaling (first method) see parameters "tempw", "tolp", and "nraise" (for VC-MD only). This rescaling method is the only one currently implemented in VC-MD 'rescale-v' control ionic temperature via velocity rescaling (second method) see parameters "tempw" and "nraise" 'rescale-T' control ionic temperature via velocity rescaling (third method) see parameter "delta_t" 'reduce-T' reduce ionic temperature every "nraise" steps by the (negative) value "delta_t" 'berendsen' control ionic temperature using "soft" velocity rescaling - see parameters "tempw" and "nraise" 'andersen' control ionic temperature using Andersen thermostat see parameters "tempw" and "nraise" 'initial' initialize ion velocities to temperature "tempw" and leave uncontrolled further on 'not_controlled' (default) ionic temperature is not controlled +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tempw Type: REAL Default: 300.D0 Description: Starting temperature (Kelvin) in MD runs target temperature for most thermostats. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: tolp Type: REAL Default: 100.D0 Description: Tolerance for velocity rescaling. Velocities are rescaled if the run-averaged and target temperature differ more than tolp. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: delta_t Type: REAL Default: 1.D0 Description: if ion_temperature='rescale-T': at each step the instantaneous temperature is multiplied by delta_t; this is done rescaling all the velocities. if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (i.e. delta_t < 0 is added to T) The instantaneous temperature is calculated at the end of every ionic move and BEFORE rescaling. This is the temperature reported in the main output. For delta_t < 0, the actual average rate of heating or cooling should be roughly C*delta_t/(nraise*dt) (C=1 for an ideal gas, C=0.5 for a harmonic solid, theorem of energy equipartition between all quadratic degrees of freedom). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nraise Type: INTEGER Default: 1 Description: if ion_temperature='reduce-T': every 'nraise' steps the instantaneous temperature is reduced by -delta_T (.e. delta_t is added to the temperature) if ion_temperature='rescale-v': every 'nraise' steps the average temperature, computed from the last nraise steps, is rescaled to tempw if ion_temperature='rescaling' and calculation='vc-md': every 'nraise' steps the instantaneous temperature is rescaled to tempw if ion_temperature='berendsen': the "rise time" parameter is given in units of the time step: tau = nraise*dt, so dt/tau = 1/nraise if ion_temperature='andersen': the "collision frequency" parameter is given as nu=1/tau defined above, so nu*dt = 1/nraise +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: refold_pos Type: LOGICAL Default: .FALSE. Description: This keyword applies only in the case of molecular dynamics or damped dynamics. If true the ions are refolded at each step into the supercell. +-------------------------------------------------------------------- \\\--- ///--- KEYWORDS USED ONLY IN BFGS CALCULATIONS +-------------------------------------------------------------------- Variable: upscale Type: REAL Default: 100.D0 Description: Max reduction factor for conv_thr during structural optimization conv_thr is automatically reduced when the relaxation approaches convergence so that forces are still accurate, but conv_thr will not be reduced to less that conv_thr / upscale. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: bfgs_ndim Type: INTEGER Default: 1 Description: Number of old forces and displacements vectors used in the PULAY mixing of the residual vectors obtained on the basis of the inverse hessian matrix given by the BFGS algorithm. When bfgs_ndim = 1, the standard quasi-Newton BFGS method is used. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_max Type: REAL Default: 0.8D0 Description: Maximum ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_min Type: REAL Default: 1.D-3 Description: Minimum ionic displacement in the structural relaxation BFGS is reset when trust_radius < trust_radius_min. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: trust_radius_ini Type: REAL Default: 0.5D0 Description: Initial ionic displacement in the structural relaxation. (bfgs only) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_1 Type: REAL Default: 0.01D0 See: w_2 +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: w_2 Type: REAL Default: 0.5D0 Description: Parameters used in line search based on the Wolfe conditions. (bfgs only) +-------------------------------------------------------------------- \\\--- ===END OF NAMELIST====================================================== ======================================================================== NAMELIST: &CELL INPUT THIS NAMELIST ONLY IF CALCULATION = 'VC-RELAX', 'VC-MD' +-------------------------------------------------------------------- Variable: cell_dynamics Type: CHARACTER Description: Specify the type of dynamics for the cell. For different type of calculation different possibilities are allowed and different default values apply: CASE ( calculation = 'vc-relax' ) 'none': no dynamics 'sd': steepest descent ( not implemented ) 'damp-pr': damped (Beeman) dynamics of the Parrinello-Rahman extended lagrangian 'damp-w': damped (Beeman) dynamics of the new Wentzcovitch extended lagrangian 'bfgs': BFGS quasi-newton algorithm (default) ion_dynamics must be 'bfgs' too CASE ( calculation = 'vc-md' ) 'none': no dynamics 'pr': (Beeman) molecular dynamics of the Parrinello-Rahman extended lagrangian 'w': (Beeman) molecular dynamics of the new Wentzcovitch extended lagrangian +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press Type: REAL Default: 0.D0 Description: Target pressure [KBar] in a variable-cell md or relaxation run. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: wmass Type: REAL Default: 0.75*Tot_Mass/pi**2 for Parrinello-Rahman MD; 0.75*Tot_Mass/pi**2/Omega**(2/3) for Wentzcovitch MD Description: Fictitious cell mass [amu] for variable-cell simulations (both 'vc-md' and 'vc-relax') +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_factor Type: REAL Default: 1.2D0 Description: Used in the construction of the pseudopotential tables. It should exceed the maximum linear contraction of the cell during a simulation. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: press_conv_thr Type: REAL Default: 0.5D0 Kbar Description: Convergence threshold on the pressure for variable cell relaxation ('vc-relax' : note that the other convergence thresholds for ionic relaxation apply as well). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: cell_dofree Type: CHARACTER Default: 'all' Description: Select which of the cell parameters should be moved: all = all axis and angles are moved x = only the x component of axis 1 (v1_x) is moved y = only the y component of axis 2 (v2_y) is moved z = only the z component of axis 3 (v3_z) is moved xy = only v1_x and v_2y are moved xz = only v1_x and v_3z are moved yz = only v2_x and v_3z are moved xyz = only v1_x, v2_x, v_3z are moved shape = all axis and angles, keeping the volume fixed 2Dxy = only x and y components are allowed to change 2Dshape = as above, keeping the area in xy plane fixed BEWARE: if axis are not orthogonal, some of these options do not work (symmetry is broken). If you are not happy with them, edit subroutine init_dofree in file Module/cell_base.f90 +-------------------------------------------------------------------- ===END OF NAMELIST====================================================== ======================================================================== CARD: ATOMIC_SPECIES ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_SPECIES X(1) Mass_X(1) PseudoPot_X(1) X(2) Mass_X(2) PseudoPot_X(2) . . . X(ntyp) Mass_X(ntyp) PseudoPot_X(ntyp) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom. Acceptable syntax: chemical symbol X (1 or 2 characters, case-insensitive) or "Xn", n=0,..., 9; "X_*", "X-*" (e.g. C1, As_h) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: Mass_X Type: REAL Description: mass of the atomic species [amu: mass of C = 12] not used if calculation='scf', 'nscf', 'bands' +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: PseudoPot_X Type: CHARACTER Description: File containing PP for this species. The pseudopotential file is assumed to be in the new UPF format. If it doesn't work, the pseudopotential format is determined by the file name: *.vdb or *.van Vanderbilt US pseudopotential code *.RRKJ3 Andrea Dal Corso's code (old format) none of the above old PWscf norm-conserving format +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } ________________________________________________________________________ * IF calculation == 'bands' OR calculation == 'nscf' : Specified atomic positions will be IGNORED and those from the previous scf calculation will be used instead !!! * ELSE IF : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// ATOMIC_POSITIONS { alat | bohr | angstrom | crystal } X(1) x(1) y(1) z(1) { if_pos(1)(1) if_pos(2)(1) if_pos(3)(1) } X(2) x(2) y(2) z(2) { if_pos(1)(2) if_pos(2)(2) if_pos(3)(2) } . . . X(nat) x(nat) y(nat) z(nat) { if_pos(1)(nat) if_pos(2)(nat) if_pos(3)(nat) } ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom | crystal } Default: alat Description: alat : atomic positions are in cartesian coordinates, in units of the lattice parameter "a" (default) bohr : atomic positions are in cartesian coordinate, in atomic units (i.e. Bohr) angstrom: atomic positions are in cartesian coordinates, in Angstrom crystal : atomic positions are in crystal coordinates, i.e. in relative coordinates of the primitive lattice vectors (see below) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: X Type: CHARACTER Description: label of the atom as specified in ATOMIC_SPECIES +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: x, y, z Type: REAL Description: atomic positions NOTE: each atomic coordinate can also be specified as a simple algebraic expression. To be interpreted correctly expression must NOT contain any blank space and must NOT start with a "+" sign. The available expressions are: + (plus), - (minus), / (division), * (multiplication), ^ (power) All numerical constants included are considered as double-precision numbers; i.e. 1/2 is 0.5, not zero. Other functions, such as sin, sqrt or exp are not available, although sqrt can be replaced with ^(1/2). Example: C 1/3 1/2*3^(-1/2) 0 is equivalent to C 0.333333 0.288675 0.000000 Please note that this feature is NOT supported by XCrysDen (which will display a wrong structure, or nothing at all). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: if_pos(1), if_pos(2), if_pos(3) Type: INTEGER Default: 1 Description: component i of the force for this atom is multiplied by if_pos(i), which must be either 0 or 1. Used to keep selected atoms and/or selected components fixed in MD dynamics or structural optimization run. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: K_POINTS { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } ________________________________________________________________________ * IF tpiba OR crystal OR tpiba_b OR crystal_b OR tpiba_c OR crystal_c : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS tpiba | crystal | tpiba_b | crystal_b | tpiba_c | crystal_c nks xk_x(1) xk_y(1) xk_z(1) wk(1) xk_x(2) xk_y(2) xk_z(2) wk(2) . . . xk_x(nks) xk_y(nks) xk_z(nks) wk(nks) ///////////////////////////////////////// * ELSE IF automatic : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS automatic nk1 nk2 nk3 sk1 sk2 sk3 ///////////////////////////////////////// * ELSE IF gamma : ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// K_POINTS gamma ///////////////////////////////////////// ENDIF ________________________________________________________________________ DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { tpiba | automatic | crystal | gamma | tpiba_b | crystal_b | tpiba_c | crystal_c } Default: tbipa Description: tpiba : read k-points in cartesian coordinates, in units of 2 pi/a (default) automatic: automatically generated uniform grid of k-points, i.e, generates ( nk1, nk2, nk3 ) grid with ( sk1, sk2, sk3 ) offset. nk1, nk2, nk3 as in Monkhorst-Pack grids k1, k2, k3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ) BEWARE: only grids having the full symmetry of the crystal work with tetrahedra. Some grids with offset may not work. crystal : read k-points in crystal coordinates, i.e. in relative coordinates of the reciprocal lattice vectors gamma : use k = 0 (no need to list k-point specifications after card) In this case wavefunctions can be chosen as real, and specialized subroutines optimized for calculations at the gamma point are used (memory and cpu requirements are reduced by approximately one half). tpiba_b : Used for band-structure plots. k-points are in units of 2 pi/a. nks points specify nks-1 lines in reciprocal space. Every couple of points identifies the initial and final point of a line. pw.x generates N intermediate points of the line where N is the weight of the first point. crystal_b: as tpiba_b, but k-points are in crystal coordinates. tpiba_c : Used for band-structure contour plots. k-points are in units of 2 pi/a. nks must be 3. 3 k-points k_0, k_1, and k_2 specify a rectangle in reciprocal space of vertices k_0, k_1, k_2, k_1 + k_2 - k_0: k_0 + \alpha (k_1-k_0)+ \beta (k_2-k_0) with 0<\alpha,\beta < 1. The code produces a uniform mesh n1 x n2 k points in this rectangle. n1 and n2 are the weights of k_1 and k_2. The weight of k_0 is not used. crystal_c: as tpiba_c, but k-points are in crystal coordinates. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: nks Type: INTEGER Description: Number of supplied special k-points. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: xk_x, xk_y, xk_z, wk Type: REAL Description: Special k-points (xk_x/y/z) in the irreducible Brillouin Zone (IBZ) of the lattice (with all symmetries) and weights (wk) See the literature for lists of special points and the corresponding weights. If the symmetry is lower than the full symmetry of the lattice, additional points with appropriate weights are generated. Notice that such procedure assumes that ONLY k-points in the IBZ are provided in input In a non-scf calculation, weights do not affect the results. If you just need eigenvalues and eigenvectors (for instance, for a band-structure plot), weights can be set to any value (for instance all equal to 1). +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: nk1, nk2, nk3 Type: INTEGER Description: These parameters specify the k-point grid (nk1 x nk2 x nk3) as in Monkhorst-Pack grids. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: sk1, sk2, sk3 Type: INTEGER Description: The grid offsets; sk1, sk2, sk3 must be 0 ( no offset ) or 1 ( grid displaced by half a grid step in the corresponding direction ). +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CELL_PARAMETERS { alat | bohr | angstrom } OPTIONAL CARD, NEEDED ONLY IF IBRAV = 0 IS SPECIFIED, IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CELL_PARAMETERS { alat | bohr | angstrom } v1(1) v1(2) v1(3) v2(1) v2(2) v2(3) v3(1) v3(2) v3(3) ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Card's flags: { alat | bohr | angstrom } Description: bohr / angstrom: lattice vectors in bohr radii / angstrom. alat or nothing specified: if a lattice constant (celldm(1) or a) is present, lattice vectors are in units of the lattice constant; otherwise, in bohr radii or angstrom, as specified. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: v1, v2, v3 Type: REAL Description: Crystal lattice vectors (in cartesian axis): v1(1) v1(2) v1(3) ... 1st lattice vector v2(1) v2(2) v2(3) ... 2nd lattice vector v3(1) v3(2) v3(3) ... 3rd lattice vector +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: CONSTRAINTS OPTIONAL CARD, USED FOR CONSTRAINED DYNAMICS OR CONSTRAINED OPTIMISATIONS (ONLY IF ION_DYNAMICS='DAMP' OR 'VERLET', VARIABLE-CELL EXCEPTED) When this card is present the SHAKE algorithm is automatically used. ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// CONSTRAINTS nconstr { constr_tol } constr_type(1) constr(1)(1) constr(2)(1) [ constr(3)(1) constr(4)(1) ] { constr_target(1) } constr_type(2) constr(1)(2) constr(2)(2) [ constr(3)(2) constr(4)(2) ] { constr_target(2) } . . . constr_type(nconstr) constr(1)(nconstr) constr(2)(nconstr) [ constr(3)(nconstr) constr(4)(nconstr) ] { constr_target(nconstr) } ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: nconstr Type: INTEGER Description: Number of constraints. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_tol Type: REAL Description: Tolerance for keeping the constraints satisfied. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_type Type: CHARACTER Description: Type of constrain : 'type_coord' : constraint on global coordination-number, i.e. the average number of atoms of type B surrounding the atoms of type A. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'atom_coord' : constraint on local coordination-number, i.e. the average number of atoms of type A surrounding a specific atom. The coordination is defined by using a Fermi-Dirac. (four indexes must be specified). 'distance' : constraint on interatomic distance (two atom indexes must be specified). 'planar_angle' : constraint on planar angle (three atom indexes must be specified). 'torsional_angle' : constraint on torsional angle (four atom indexes must be specified). 'bennett_proj' : constraint on the projection onto a given direction of the vector defined by the position of one atom minus the center of mass of the others. G.Roma,J.P.Crocombette: J.Nucl.Mater.403,32(2010) +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variables: constr(1), constr(2), constr(3), constr(4) Description: These variables have different meanings for different constraint types: 'type_coord' : constr(1) is the first index of the atomic type involved constr(2) is the second index of the atomic type involved constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'atom_coord' : constr(1) is the atom index of the atom with constrained coordination constr(2) is the index of the atomic type involved in the coordination constr(3) is the cut-off radius for estimating the coordination constr(4) is a smoothing parameter 'distance' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD 'planar_angle', 'torsional_angle' : atoms indices object of the constraint, as they appear in the 'ATOMIC_POSITION' CARD (beware the order) 'bennett_proj' : constr(1) is the index of the atom whose position is constrained. constr(2:4) are the three coordinates of the vector that specifies the constraint direction. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: constr_target Type: REAL Description: Target for the constrain ( angles are specified in degrees ). This variable is optional. +-------------------------------------------------------------------- ===END OF CARD========================================================== ======================================================================== CARD: OCCUPATIONS OPTIONAL CARD, USED ONLY IF OCCUPATIONS = 'FROM_INPUT', IGNORED OTHERWISE ! ///////////////////////////////////////// // Syntax: // ///////////////////////////////////////// OCCUPATIONS f_inp1(1) f_inp1(2) . . . f_inp1(nbnd) [ f_inp2(1) f_inp2(2) . . . f_inp2(nbnd) ] ///////////////////////////////////////// DESCRIPTION OF ITEMS: +-------------------------------------------------------------------- Variable: f_inp1 Type: REAL Description: Occupations of individual states (MAX 10 PER ROW). For spin-polarized calculations, these are majority spin states. +-------------------------------------------------------------------- +-------------------------------------------------------------------- Variable: f_inp2 Type: REAL Description: Occupations of minority spin states (MAX 10 PER ROW) To be specified only for spin-polarized calculations. +-------------------------------------------------------------------- ===END OF CARD==========================================================